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Abstract

The present thesis serves as an introduction to modeling with the shallow-water equations.
Besides their derivation within the framework of fluid mechanics, the numerical solution
is addressed. To this end, finite-volume methods are employed which will be introduced
and discussed on the basis of said system of differential equations. Simulations of real-
world applications (e. g. the propagation of earthquake-generated tsunami waves) help to
illustrate the practical utility of the mathematical model.

Zusammenfassung

Die vorliegende Arbeit dient als Einführung in die Modellierung mit den Shallow-Water-
Gleichungen. Neben deren Herleitung im Rahmen der Strömungsmechanik wird insbeson-
dere auch die numerische Lösung thematisiert. Hierfür kommen Finite-Volumen-Verfahren
zum Einsatz, die anhand ebenjenes Differentialgleichungssystems eingeführt und disku-
tiert werden. Simulationen von Anwendungsbeispielen (z. B. die Ausbreitung von durch
Erdbeben verursachten Tsunamiwellen) illustrieren den praktischen Nutzen des mathema-
tischen Modells.
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Introduction

It must be [...] one of the race’s most persistent and comforting hallucinations to trust
that “it can’t happen here” — that one’s own time and place is beyond cataclysm.

John Wyndham, The Day of the Triffids

Solving a partial differential equation is one of the most common tasks in applied math-
ematics. The required numerical computations are therefore of great importance. This
thesis is intended as a case study. It investigates one such model from start to finish —
from its derivation to its theoretical analysis and its numerical solution. The shallow-water
equations are a set of partial differential equations that govern the movement of certain
types of waves. The flow of water is, generally speaking, a very difficult task to handle
on a computer. In this context, the shallow-water framework provides practitioners with
a relatively simple model which retains enough detail to produce viable results in many
cases. Its applications are widespread, but among the most famous ones are the simulation
of tsunami waves and the waves which result from the failure of a dam wall.

Tsunamis have plagued Japan more than any other country on earth. On March 11,
2011 a magnitude 9 earthquake was detected about 70 kilometers outside of the Oshika
peninsula. The resulting flood wave displaced over 160 000 people and left over 2 000 dead.
The “Great East Japan Earthquake” as it is called today also famously resulted in the
Fukushima nuclear incident. The troubled relationship of the Japanese people with the
sea is mirrored in many works of art. One of these is Hokusai’s The Great Wave off
Kanagawa which graces this thesis’ cover [14].

In 1941, the Red Army blew up the strategically important Dnipro dam near Zapor-
izhzhia in Ukraine. The subsequent inundation was supposed to impede the advance of the
German Wehrmacht. The flooding killed somewhere between 20 and 100 thousand people,
mostly local civilians. Over 80 years later the destruction of dams is still an important
part of military warfare. Recently the very same dam has come under fire again. This
time by Russian forces as part of the Russo-Ukrainian War.

These disasters have shown the need for better preventative measures, the need for evac-
uation plans and inundation maps. With the help of modern-day processors, mathematical
models can lead to simulations which aid in these tasks. It would be hubris, however, to
assume that such calculations are all that it takes. Unpredictability will always remain a
large part of our relationship with water. And we should not do ourselves the disservice of
underestimating nature’s power.

The structure of this thesis is as follows. It is split into three chapters and 13 sections.
I have tried my best to write each section as independently of the rest as possible. The text
should be accessible to all those with a strong background in linear algebra and multidi-
mensional real analysis. What theoretical knowledge is required beyond that is collected in
chapter I. The second chapter introduces the reader to the shallow-water equations. They
are derived in detail, starting from the Euler equations. In addition, extensions to this
model and real-world applications are discussed. Chapter III describes the numerical solu-
tion of conservation laws. It showcases the fundamental idea of finite-volume methods with
Godunov flux, presents a simple approximate Riemann solver and treats the incorporation
of source terms. The thesis concludes with numerical simulations.

iv



Chapter I

Theoretical Background

This chapter briefly presents the necessary theoretical notions for the remainder of this
thesis. We will assume that the reader is already somewhat familiar with most of these
concepts. Should this not be the case, relevant literature will be referenced throughout.

Section 1 gives a short introduction to the class of problems at the heart of this thesis:
differential equations. We then recall some fundamental facts and definitions from vector
analysis in section 2, including but not limited to Gauss’ integral theorem. The final
section 3 discusses an important class of partial differential equations to which the titular
shallow-water equations belong.

1 Differential Equations

Let us begin by recalling the standard terminology that is associated with differential
equations. A more thorough exploration can be found in any introductory textbook on
partial differential equations like that of Olver [25] or Evans [9].

A differential equation introduces a relationship between a function and its derivatives.
Since the function itself is not known, the goal is to deduce it from the relation that the
differential equation provides. This process of finding solution functions is what we refer
to as solving the differential equation. For better illustration, we list some examples:

(a)
du

dt
ptq “ uptq;

(b)

„

d2u

dt2
ptq

2

“ 2t
du

dt
ptq ` sinptquptq;

(c)
Bu

Bt
px, tq `

Bu

Bx
px, tq “ 0;

(d)
Bu

Bt
px, tq “

B2u

Bx2
px, tq ` sinptq

„

B2u

BtBx
px, tq

2

.

In all of the examples above we are looking for functions u such that the corresponding
relation is fulfilled for all t or px, tq in a specified region, e. g. on s0,8r for (a) and (b) or
on Rˆ s0,8r for (c) and (d). So a clearer notation of (c) might be

Bu

Bt
px, tq `

Bu

Bx
px, tq “ 0 for all px, tq P Rˆ s0,8r . (1.1)

Obviously, the function u has to be defined in a way that this makes sense, e. g. u : D Ñ R
for an open set D Ď R2 with Rˆs0,8r Ď D for (1.1). This also includes the differentiability

1



1. Differential Equations 2

of u to at least the degree that the differential equation requires. If the function u depends
on just one variable (like in (a) and (b)), we call the differential equation ordinary, otherwise
we speak of a partial differential equation. This thesis will focus almost exclusively on the
latter type.

Writing down many and long differential equations becomes cumbersome very quickly
and hence shorter notations have been developed: The variables that u depends on can
almost always be inferred from the derivatives that appear, so we will usually omit them
when no confusion is to be expected. The variable t will typically represent time while
x, y, z will be stand-ins for space. With this convention (c) turns into

Bu

Bt
`
Bu

Bx
“ 0.

In addition, a more compact derivative notation is often employed where the subscript
indicates the differentiation. With this notation (d) simplifies to

ux “ uxx ` sinptqpuxtq
2.

We will switch between these conventions as needed.
Differential equations are commonly classified by order, i. e., by the highest-order deriva-

tive that appears. Example (c) is of first and example (d) of second order. Most applica-
tions get by with orders one or two. Some problems may also require order three or four,
but everything higher is quite rare.

When several differential equations for possibly several functions come together, we
speak of a system of differential equations. In section 8 we will encounter the system
(px, tq P Rˆ s0,8r)

ht ` phuqx “ 0,

phuqt ` phu
2
` 1

2
gh2
qx “ 0

(1.2)

for real-valued functions px, tq ÞÑ hpx, tq and px, tq ÞÑ upx, tq where g P R is a known
constant. By introducing the right vectors, a system can usually be converted into a more
simple vector-valued differential equation, if we differentiate vectors componentwise. In
the case of the system (1.2) we could, for example, define two functions in R2 via

qpx, tq :“

ˆ

q1px, tq
q2px, tq

˙

:“

ˆ

hpx, tq
hpx, tqupx, tq

˙

and

fpqq :“

ˆ

f1pqq
f2pqq

˙

:“

˜

q2
pq2q2

q1
` 1

2
gpq1q

2

¸

“

ˆ

hpx, tqupx, tq

hpx, tq rupx, tqs2 ` 1
2
g rhpx, tqs2

˙

to transform it into the system
qt ` fpqqx “ 0.

This is the standard form of a so-called conservation law which will be discussed in detail
in section 3. Throughout this thesis vectors will be set in bold to distinguish them from
their scalar counterparts.

Notice that a differential equation can be linear, i. e., the derivative functions all appear
by themselves like in (c) instead of in products or more complicated combinations like in
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(1.2). Otherwise they are called nonlinear. The benefit of linear differential equations is
that a linear combination of two particular solution functions has to be a solution itself.

It is customary to group differential equations into three classes. This can be done
for more general (nonlinear) systems, but we will illustrate the idea for a scalar linear
second-order partial differential equation

autt ` butx ` cuxx ` dut ` eux ` fu “ g, (1.3)

where a, b, c, d, e, f and u are functions of x and t and so is g. If the so-called forcing
function g vanishes, then the differential equation is called homogeneous. In order for (1.3)
to actually be of second order at least one of the three functions a, b, c should not vanish
everywhere. Now the so-called discriminant

∆ :“ b2
´ 4ac

can be defined and with it we distinguish the following cases: The equation (1.3) at a point
px, tq is called

• hyperbolic, if ∆px, tq ą 0,

• parabolic, if ∆px, tq “ 0 with a2 ` b2 ` c2 ‰ 0, and

• elliptic, if ∆px, tq ă 0.

The names arise by studying the related quadratic equation

ax2
` bxy ` cy2

` dx` ex` fy ` g “ 0.

It is well-known that the resulting curves in the x-y-plane are conic sections and that for
∆ ą 0 these are hyperbolas, for ∆ “ 0 they are parabolas and for ∆ ă 0 one finds ellipses.
It should be clear that not all differential equations obey this sorting process, but most
applications require one of these types. Since a, b and c will generally not be constant, it is
possible for the type of a differential equation to change with position and time. However,
this case is relatively uncommon. Typically, the motion of waves is modeled with hyperbolic
systems, making them the focus of this thesis. The most famous parabolic equation is the
heat equation which describes how bodies heat up and cool down. Elliptic problems arise,
for example, in electrostatics in the form of the Laplace or the Poisson equation.

Notice that a differential equation by itself can have many solutions, e. g. it is easy
to see that both t ÞÑ expptq and t ÞÑ 2 expptq satisfy equation (a). This illustrates why
one typically adds some initial or boundary values to (hopefully) force the solution to be
unique. For example, if we add the initial condition

up0q “ 1

to (a), then t ÞÑ expptq turns out to be the only solution (by the Picard-Lindelöf theorem).
For partial differential equations this same idea is somewhat more complicated. Here the
initial data naturally needs to be an entire function u0, e. g.

upx, 0q “ u0pxq.



2. Vector Analysis 4

A differential equation together with an initial condition is called an initial value problem
(or Cauchy problem). Boundary values will only play a role in this thesis for certain
numerical considerations.

All of these discussions are in vain, if no solution(s) exists to begin with. The existence
and uniqueness of solutions to differential equations (with appropriate boundary or initial
conditions) is its own subject of research. For some equations that arise in practice one
can show such theorems, usually with the help of heavy mathematical machinery. Un-
fortunately, for many important differential equations no existence and uniqueness results
have been found (yet). Famously, this question in the special case of the Navier-Stokes
equations (which we will encounter in section 5) is one of the Clay Institute of Mathe-
matics’ millenium problems. For practical purposes (and thereby for this thesis), these
theoretical questions luckily pose no hurdle. After all, if a partial differential equation
that was derived using nothing but simple laws of nature would not admit a (unique) so-
lution, then mathematical modeling as a whole would be in all different kinds of trouble
philosophically.

2 Vector Analysis

The appropriate mathematical framework for modeling fluid flow is the three-dimensional
real space R3. This section will collect all of the relevant theorems and definitions sur-
rounding the integration and differentiation of three-dimensional functions. They serve as
the theoretical backdrop for the models of the following chapter. Most of this information
can be found in any standard textbook on (vector) analysis. A compact introduction is
given in [8] for example. It should be pointed out that we will use the typical notation from
fluid dynamics in this text. This means (i) that vectors will be set in bold, e. g. x P R3, and
(ii) that the components will usually be notated in accordance with the first component,
e. g. x “ px, y, zqT.

Let us begin by introducing the types of functions that this section will focus on.

Definition 2.1 Let Ω Ď R3 be a set. Then a vector-valued function f : Ω Ñ R3 is called
a vector field. Its component functions are often notated as fpxq “ pfpxq, gpxq, hpxqqT

where x “ px, y, zqT P Ω. Similarly, a scalar-valued function φ : Ω Ñ R is called a scalar
field.

Typical examples of vector fields are velocity, gravitational or magnetic fields. Typical
examples of scalar fields are temperature, pressure or density.

Recall that scalar fields can be integrated with the three-dimensional (Lebesgue) inte-
gral

ż

Ω

φpx, y, zq dpx, y, zq “

ż

Ω

φpxq dx (2.1)

as long as Ω is (Lebesgue-)measurable and φ sufficiently well-behaved. Integrating vector
fields comes down to integrating the component scalar fields like in (2.1), so

ż

Ω

fpxq dx :“

¨

˝

ş

Ω
fpxq dx

ş

Ω
gpxq dx

ş

Ω
hpxq dx

˛

‚,



5 I. Theoretical Background

again given the (Lebesgue-)measurability of Ω and well-behavedness of f , g and h. Both
types of integrals will be referred to as volume integrals for obvious reasons and dx “
dpx, y, zq is called the volume element.

The notion of surface integrals will also play an important role. The first type that we
require is the scalar-valued surface integral

ż

BΩ

φpx, y, zq ds “

ż

BΩ

φpxq ds

where ds is the scalar surface element. In this context BΩ is the surface (the boundary,
speaking in topological terms) of the volume Ω. We can also define a vectorized surface
integral

ż

BΩ

φpx, y, zqnpx, y, zq ds “

ż

BΩ

φpxqnpxq ds

where ds :“ npxqds is the vectorial surface element. In this case npxq is the unit normal

x

y

z

BΩ

Ω

ds

npxq

Figure 2.1: A volume Ω with boundary BΩ, surface element ds and its outward
normal n at x P BΩ.

vector pointing out of Ω at a point x P BΩ. It should be clear that this construction again
requires certain conditions on both the shape of the set Ω and the function φ which we
will not go into here.

Next, let us turn to differentiation. For a differentiable scalar field φ : Ω Ñ R on an
open subset Ω Ď R3 the gradient vector

∇φpxq :“

ˆ

Bφ

Bx
pxq,

Bφ

By
pxq,

Bφ

Bz
pxq

˙T

, x P Ω

contains the partial derivatives. For vector fields f : Ω Ñ R3 with component functions
f “ pf, g, hqT where Ω is again open, we write

div fpxq :“
Bf

Bx
pxq `

Bg

By
pxq `

Bh

Bz
pxq, x P Ω

for its divergence. If we notate the standard Euclidean inner product in R3 as a¨b :“ aTb “
ř3
i“1 aibi for two vectors a “ pa1, a2, a3q

T and b “ pb1, b2, b3q
T, then we can think of taking

the divergence as a scalar product of f with the formal vector ∇ :“ pB{Bx, B{By, B{BzqT ,
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the nabla operator. This suggests the notation ∇ ¨ f “ div f which is commonly used in
fluid dynamics.

Our first theorem converts volume into surface integrals.

Theorem 2.2 (Gauss integral theorem)
Let D Ď R3 be an open set, f : D Ñ R3 a continuously-differentiable function and Ω Ď D a
sufficiently well-behaved subset. If npxq denotes the outward unit normal vector on x P BΩ,
then

ż

Ω

∇ ¨ fpxq dx “

ż

BΩ

fpxq ¨ npxq ds.

A proof can be found in [8, Satz 10.11.1].
As a direct consequence, we can show the following version of Gauss’ integral theorem

for the vector field induced by a scalar field’s gradient.

Corollary 2.3 Let D Ď R3 be an open set, φ : D Ñ R a continuously-differentiable
function and Ω Ď D a sufficiently well-behaved subset. Then

ż

Ω

∇φpxq dx “

ż

BΩ

φpxqnpxq ds,

where npxq denotes the outward unit normal vector on x P BΩ.

Proof: Let c :“ pc1, c2, c3q
T P R3 be a fixed constant. Notice that x ÞÑ φpxqc defines a

vector field on D. Its divergence is given via

∇ ¨
`

φpxqc
˘

“
B

Bx

`

φpxqc1

˘

`
B

By

`

φpxqc2

˘

`
B

Bz

`

φpxqc3

˘

“ c1
Bφ

Bx
pxq ` c2

Bφ

By
pxq ` c3

Bφ

Bz
pxq

“ c ¨∇φpxq

because c is constant. Now we use the Gauss integral theorem 2.2 to find

c ¨

„
ż

Ω

∇φpxq dx



“

ż

Ω

∇ ¨
`

φpxqc
˘

dx “

ż

BΩ

`

φpxqc
˘

¨ npxq ds “ c ¨

„
ż

BΩ

φpxqnpxq ds



.

By setting c equal to the standard unit vectors e1, e2 and e3 in R3 we obtain the desired
identity. �

The last terminology of this section is that of an outer product : Given two vectors
a “ pa1, a2, a3q

T, b “ pb1, b2, b3q
T P R3 this object is a matrix in R3ˆ3 defined as

ab b :“ abT
“ paibjqi,j“1,2,3 “

¨

˝

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

˛

‚.

In this context the notation

∇ ¨

¨

˝

a11 a12 a13

a21 a22 a23

a31 a32 a33

˛

‚:“

¨

˝

∇ ¨ pa11, a12, a13q
T

∇ ¨ pa21, a22, a23q
T

∇ ¨ pa31, a32, a33q
T

˛

‚“

¨

˚

˝

Ba11
Bx
` Ba12

By
` Ba13

Bz
Ba21
Bx
` Ba22

By
` Ba23

Bz
Ba31
Bx
` Ba32

By
` Ba33

Bz

˛

‹

‚

P R3,
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will turn out to be quite practical. This can be seen as a matrix version of the divergence
where A “ paijqi,j“1,2,3 P R3ˆ3 is the matrix and each of the components aij (for i, j “
1, 2, 3) is a scalar-valued function of x, y and z.

Our final result allows a reformulation of the divergence of an outer product.

Lemma 2.4 Let Ω Ď R3 be a set, φ : Ω Ñ R a scalar field and f , g : Ω Ñ R3 two vector
fields. All functions and Ω are assumed to be sufficiently well-behaved. Then we find

ż

BΩ

fpxq
`

gpxq ¨ npxq
˘

ds “

ż

Ω

∇ ¨
`

fpxq b gpxq
˘

dx,

where npxq is the outward unit normal vector in x P BΩ.

The proof is a simple application of Gauss’ integral theorem 2.2 to each component of f
separately.

3 Conservation Laws

On a surface level subjects like physics, chemistry and biology appear mostly unrelated.
On a mathematical level, however, their models often show similarities. One very common
class of differential equations that appear frequently are conservation laws. This section
explains their origin (similar to [23]) and introduces their theoretical treatment (based on
[20] and [27]).

When conservation laws appear in practice some sort of balance law is always involved.
To this end, consider some fixed region Ω Ď R3 and in it some quantity with a density
or concentration q which is itself a scalar-valued function of time t ą 0 and space x “
px, y, zqT P R3. What happens to the quantity inside of Ω as time passes? Typically one
has the following relation:

time rate of change of quantity “ rate at which quantity flows into Ω

´ rate at which quantity flows out of Ω

` rate at which quantity is produced in Ω

´ rate at which quantity is destroyed in Ω.

(3.1)

To illustrate this, consider an example from population biology. If the quantity corresponds
to the population size of some species (e. g. foxes) in a fixed area Ω (e. g. Bavaria), then
(3.1) can be formulated as

rate of population change “ immigration rate´ emigration rate` birth rate´ death rate.

The natural mathematical way to phrase (3.1) is via integrals over the region Ω and its
boundary BΩ. The total quantity inside of Ω is given via the volume integral

ż

Ω

qpx, tq dx.

Notice that this is a function that varies only with time. Its derivative corresponds to the
left side of (3.1).
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The inflow and outflow can be combined into one net term, if we introduce a flux
function px, tq ÞÑ fpx, tq. Its components correspond to the amount of the quantity q
flowing through the surface BΩ at the point the point x on the surface and time t per unit
area and per unit time in the component’s direction. By convention, we will say that a
component of the flux function is positive, if the flow is out of the surface, and negative, if
it is into the surface. This way the integral

´

ż

BΩ

fpx, tq ¨ npxq ds (3.2)

subsumes the first two terms on the right side of (3.1). Here npxq is the unit normal vector
on x P BΩ pointing out of Ω. The minus sign is due to the outward-facing direction of n.

The production and destruction can be handled in somewhat the same way with a
scalar-valued source function pq,x, tq ÞÑ ψpq,x, tq. Notice that ψ can generally vary with
the quantity q. If the source function is positive, we speak of a source, and if it is negative,
we speak of a sink. The last two terms on the right side of (3.1) can then be represented
as

ż

Ω

ψpqpx, tq,x, tq dx.

If we use Gauss’ integral theorem 2.2 to transform the surface integral (3.2) into a volume
integral, we can state (3.1) as

d

dt

ˆ
ż

Ω

qpx, tq dx

˙

“ ´

ż

Ω

∇ ¨ fpx, tq dx`

ż

Ω

ψpqpx, tq,x, tq dx. (3.3)

In the case where q is a sufficiently smooth function, the derivative on the left may be
pulled into the integral. And since Ω is an arbitrary region, the smoothness of the involved
functions would imply the differential equation

qt `∇ ¨ fpx, tq “ ψpq,x, tq.

Its unknowns are q and f while ψ is given. However, in many applications it is possible
to write f as a function of q directly. Notice that this is a special case of the form above
since q itself depends on px, tq. In said case the differential equation becomes

qt `∇ ¨ fpqq “ ψpq,x, tq (3.4)

or
qt ` fpqqx ` gpqqy ` hpqqz “ ψpq,x, tq (3.5)

by writing out the divergence operator ∇¨ and using the notation f “ pf, g, hqT for the
components. The corresponding formulation of (3.3) takes the form

ż

Ω

qtpx, tq `∇ ¨ f
`

qpx, tq
˘

dx “

ż

Ω

ψpqpx, tq,x, tq dx. (3.6)

Equations (3.6) and (3.4) are the integral and differential form of a conservation law. The
unknown function here is q while f and ψ are known. We note that if one is given several
conservation laws at the same time, then they can be combined into a vectorized version
of (3.5) via

qt ` fpqqx ` gpqqy ` hpqqz “ ψpq,x, tq. (3.7)
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Here q is a vector of conserved quantities; f , g and ψ are defined accordingly, so that each
component of (3.7) corresponds to one of the given conservation laws.

Notice that only the case where the source term vanishes is a proper conservation in
the colloquial sense. Consequently, equations with a non-trivial ψ are sometimes referred
to as balance laws instead. Section 5 will show two concrete examples of conservation laws
in the context of fluid flow. The first one being conservation of mass, which will not yield
a source term, and the second one being conservation of momentum, which will yield a
source term.

Next up, we want to introduce what it means for the one-dimensional conservation law

qtpx, tq ` f
`

qpx, tq
˘

x
“ ψpqpx, tq, xq for all px, tq P Rˆ s0,8r , (3.8)

to be hyperbolic. We will only study the one-dimensional case in this thesis. A suitable
generalization for several dimensions exists and can, for example, be found in [20, Section
18.5]. Recall that we already defined the term hyperbolic for second-order scalar linear
partial differential equations in section 1. We must now expand this terminology somewhat,
beginning with a linear system of conservation laws

qt ` Aqx “ ψpq, xq (3.9)

for some function q : Rˆ s0,8r Ñ Rm and a constant matrix A P Rmˆm. In this case, we
say that (3.9) is hyperbolic, if A is diagonalizable with real eigenvalues. If we were instead
given a quasilinear system of conservation laws

qt ` Apq, x, tqqx “ ψpq, xq, (3.10)

then we say that (3.10) is hyperbolic, if the variable matrix Apq, x, tq P Rmˆm is diagonal-
izable with real eigenvalues at every point pq, x, tq. To define hyperbolicity for (3.8), we
carry out the derivative in terms of x with the chain rule to find

qt ` f
1
pqqqx “ ψpq, xq, (3.11)

which is valid, if q is smooth. Here

f 1 “

¨

˚

˚

˚

˚

˝

Bf1

Bq1

Bf1

Bq2

. . .
Bf1

Bqm
...

...
. . .

...
Bfm
Bq1

Bfm
Bq2

. . .
Bfm
Bqm

˛

‹

‹

‹

‹

‚

P Rmˆm

is the Jacobian matrix of f “ pf1, f2, . . . , fmq
T for q “ pq1, q2, . . . , qmq

T. Hence (3.11) is
a quasilinear system. We will say that (3.8) is hyperbolic, if (3.11) is hyperbolic for each
(physically-relevant) value of q.

Let us now turn to the theoretical investigation of conservation laws, focusing first on
an appropriate notion of solution. The traditional solution concept turns out to be too
restrictive because (i) certain applications require discontinuous initial conditions (cf. dam
break in section 4) and (ii) solutions can start out smooth but develop discontinuities
as time goes on (e. g. the breaking of a wave). This forces us to define a new kind of
solution which admits discontinuities. The derivation above already suggests one way to
do this: Notice that the differential form of the conservation law was derived from the
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integral form (3.3). So in a way the integral equation is the more fundamental object.
And indeed, the integral equation can still hold even when discontinuities are present.
As it turns out, this particular integral form just so happens to be difficult to work with
mathematically. For this reason, a different (but equivalent) integral form is preferred for
theoretical investigations. We will illustrate its derivation for the simple scalar conservation
law

qt ` fpqqx “ 0 for px, tq P Rˆ s0,8r , (3.12)

but this approach generalizes to more complicated settings. The idea is to shift the dif-
ferentiability away from q to some helper function φ : R ˆ s0,8r Ñ R. A viable set
of helper functions happens to be the set of test functions C1

c . A function φ is called
a test function, if it is continuously differentiable and has compact support. The sup-
port of a function is the closure of the set of points where it is nonzero, so in this case
suppφ :“ tx P Rˆ s0,8r | φpxq ‰ 0u needs to be a compact subset of R2. After multiply-
ing (3.12) with such a function, we can be sure that integration over the entire domain

ż 8

0

ż 8

´8

`

qt ` fpqqx
˘

φpx, tq dxdt “ 0

is permitted. Now we utilize integration by parts to shift the differentiation to the test
function:

ż 8

0

ż 8

´8

qφt ` fpqqφx dxdt “ ´

ż 8

´8

qpx, 0qφpx, 0q dx. (3.13)

This also relies on the convenient cancellation of nearly all the boundary terms thanks to the
compact support of φ. We call (3.13) the weak form of (3.12) and a function px, tq ÞÑ qpx, tq
is called a weak solution of (3.12) combined with some initial data qpx, 0q “ q0pxq for all
x P R, if (3.13) holds for all functions φ P C1

c .
A natural next question to ask at this point is whether or not a weak solution exists

and is unique. We cannot comment on this in detail, although in general one finds that
a solution exists but is not unique. This motivates the derivation of so-called entropy
conditions which provide a way of identifying the physically-relevant solution among the
torrent of possible solutions, see [21] for details. It is also worth noting that few theoretical
results exist for the general conservation law (3.7). Given its practical relevance, that
should come as somewhat of a surprise. As of now, only the case with one spatial dimension
can be treated [9, chapter 11].

For the purposes of this text we will also require a very special type of initial value prob-
lem which arises when studying a homogeneous conservation law in one spatial dimension

qx ` fpqqx “ 0 for all px, tq P Rˆ
‰

t,8
“

(3.14)

with piecewise constant initial data

qpx, tq “

"

q`, if x ă x,
qr, if x ą x

*

for all x P R.

Since the value at the jump is not of importance, it is usually not assigned a corresponding
output. Here t ą 0 is a given time and x P R a given point. The vectors q` P Rm

and qr P Rm are also known. More generally, hyperbolic partial differential equations in
combination with such a piecewise jump are referred to as Riemann problems. There are
several reasons which motivate their investigation:
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qr

q`

x
x

Figure 3.1: Initial data in a Riemann problem.

• Riemann problems yield interesting test problems for numerical algorithms. For
example, the Riemann problem for the shallow-water equations is simply the dam-
break problem, cf. section 4.

• Nonlinear equations can develop singularities even for smooth initial conditions. And
the simplest kind of non-smooth initial data is a Riemann problem. Yet, all typical
phenomena surrounding hyperbolic equations (e. g. shocks, rarefaction waves, super-
critical flow) arise during their solution.

• Thanks to the simplicity of the initial conditions, exact solutions can be found even
for complicated (nonlinear) conservation laws. (The same is not generally true for
balance laws, however.)

• Riemann problems form the basis of the numerical methods which will be described
in detail in chapter III.

For the rest of this text, we will assume that the reader is somewhat familiar with the
theoretical underpinnings of weak solutions to hyperbolic problems (in particular Riemann
problems). A gentle introduction to these topics can be found in chapter 3 of [23] or
chapter 2 of [27]. A short summary, formulated in the shallow-water context for tsunami
modeling, is given in [5]. We will give only a broad review here for the results of a
nonlinear conservation law in one spatial dimension (3.14). With m equations one receives
a solution consisting of m`1 constant states which are separated by m waves, one for each
eigenvalue of the Jacobian matrix f 1pqq. These waves may be shocks, contact waves or
smooth transition waves such as rarefactions. Most importantly, the solution is actually a
similarity solution which means that it can be written in terms of a characteristic variable

ξ “
x´ x

t´ t
.

The solution function is then of the form ξ ÞÑ qpξ; q`, qrq. Notice that this also implies
that the solution is constant along rays of the form ξ “ c where c P R is a given constant.
The Riemann solutions for the shallow-water system will be expanded on in section 8.



Chapter II

The Shallow-Water Equations

This chapter derives the partial differential equations that govern shallow-water flow. One
application of this theory that we will focus on in particular are tsunami waves. The
essential assumption of this model is that the horizontal scales are much larger than the
vertical one. This allows us to neglect vertical components of the participating functions
and, hence, to end up with a two-dimensional description instead of a three-dimensional
one.

We now outline the structure of this chapter, beginning with section 4 in which we
describe typical applications of the shallow-water equations. This provides the motivation
for studying the shallow-water model in the first place. Next, we introduce some funda-
mental concepts from fluid dynamics in section 5. In particular, we will derive two partial
differential equations that govern fluid flow more generally. We then spend section 6 on
applying these equations to the special setting of the shallow-water model. On this basis
we will be able to derive the full set of two-dimensional shallow-water equations in section
7. We end our discussion in section 8 with an outlook on how the shallow-water model
can be extended to fit different types of phenomena. In addition, we will encounter a
one-dimensional version of the shallow-water equations which will become the basis for the
numerical investigations of chapter III.

4 Real-World Applications of Shallow-Water Modeling

Before we begin with the mathematical description of the shallow-water equations in the
following sections, we first discuss where they may be applied and under which conditions.
We do this to convince ourselves that they are worth studying and to illustrate the wide
variety of phenomena that a singular mathematical model may apply to. As a welcome
side-effect, these applications provide an appropriate setting for the numerical experiments
of section 13, allowing practitioners to compare real-world data against computational
predictions.

The shallow-water equations are a set of three (or sometimes two) nonlinear partial
differential equations which govern the motion of specific types of waves in fluids. A fluid
is a substance that flows and has no fixed shape. Among the most important fluids are
liquids and gases — water and air are fluids, but honey and lava are as well. A wave then
refers to any kind of disturbance that travels through such a fluid. Contrary to what the
name would have you believe, the shallow-water equations’ area of application is neither
restricted to water nor to shallow fluids. In fact, the only limiting assumption that we
require is that the length scale of the wave is much bigger than the depth scale. We will
see what this means precisely later on.

Shallow-water theory has many different applications. It was used by John von Neu-

12
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mann in weather forecasts that were computed on the ENIAC (the first electronic com-
puter) in the 1950s, marking the onset of numerical weather prediction. In another case
shallow-water models were used to study the Great Red Spot on Jupiter. These and many
more applications are discussed in [31, Chapter 1]. We will dive deeper into two geophysical
applications in each of which the fluid will turn out to be water.

Dam Break

A dam separates two layers of water with constant height from each other. The reservoirs
contain large volumes of water and are often surrounded by either man-made walls or
natural terrain, e. g. narrow canyons or valleys. Dams have become an important part of
modern infrastructure. They supply water for the sake of irrigation and hydroelectric power
via the usage of pumps. In addition, they serve an important purpose in the deliberate
control and prevention of flooding.

Besides their benefits, dams have a number of risks associated with them. The failure
of a dam wall can have catastrophic consequences. The French town of Fréjus experienced
such an event in 1959 where over 400 people were killed when the walls of the Malpasset
dam gave way after heavy rainfall. For the sake of prevention it is important to conduct
numerical simulations of these events before they happen. On their basis inundation maps
can be produced which in turn lead to evacuation plans.

For theoretical purposes one often considers the flow that is observed when the dam
wall is removed instantaneously. We note, however, that this type of flow can also arise

Dam

in different contexts, one example being tidal bores in rivers. The resulting waves are
comparable to shock waves in aerodynamics. In mathematics, dam breaks show the need
for numerical methods which can handle (almost) discontinuous functions well. They
provide the simplest real-world example of such a wave.

Besides the failure of the dam wall, a different danger that is associated with dams are
landslides from neighboring hills into the upper reservoir. These incidents are known to
cause flood waves of sufficient height to overtop the dam and thus cause destructive flow
downstream. In 1963 such an incident occurred in Italy, killing over 2000 people in its
wake, when a large piece of rock broke off a mountain near a dam constructed around the
river Vajont. The resulting type of wave actually belongs to a different class of applications
of the shallow-water equations which will be introduced next.

Tsunamis

In Japanese the words tsu and nami translate to harbor and wave. Tsunamis are certain
types of gravity waves that are caused by sudden displacement of water. They are most
commonly triggered by underwater earthquakes: The earth’s mantle is made up of many
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tectonic plates that are in constant motion. At the boundary between two plates one
plate moves, or subducts, beneath the other (in almost all cases). This motion does not
happen in a smooth fashion. Rather, the two neighboring plates build up stress, causing
the overriding plate to bulge up. This process comes to a violent end in a sudden snap
during which the higher plate jumps up several meters, allowing the lower plate to slide
by. The motion of the seafloor then sets off a tsunami wave that is typically several 100
kilometers long. This generation process is illustrated in figure 4.1. The displacement of

Figure 4.1: Origin of earthquake-generated tsunamis. Taken from [2].

the water immediately releases a huge amount of potential energy into the ocean (as much
as 10 megatons of TNT). An exact value can be obtained by integrating over the affected
region

ĳż ηpx,yq

ηs

%gz dzdxdy “

ĳ

1

2
%grηpx, yq ´ ηss

2 dxdy,

using the height of the water ηpx, yq after the displacement, the average sea level ηs as well
as the density of ocean water % and the acceleration due to gravity g. The length of such a
rupture can be on the order of 1000s of kilometers, displacing water over an area of about
100 km width. Meanwhile, the ocean floor is displaced on the order of several meters. The
released energy is dissipated mainly through friction at the bottom of the ocean.

Besides earthquakes, other sources of tsunamis are underwater volcanic eruptions as well
as asteroid impacts. In addition, landslides (both from land into water and underwater)
have been observed to cause tsunami waves. This thesis will mainly focus on tsunamis that
were caused by earthquakes, though. These are the most common and typically the most
destructive type. The fundamental property that we will take advantage of is that the
earthquake that caused the tsunami displaces the entire water column over a rather large
area. This allows us to use two-dimensional models which require much less computation
than three-dimensional ones.

The speed of a tsunami wave depends heavily on the depth of the underlying ocean
floor. On average, the ocean is roughly 4 kilometers deep. Over this kind of depth a
tsunami wave travels at a speed of about 700 kilometers per hour. As the wave approaches
the shore, however, it drastically slows down. In a depth of 100 meters the speed is only on
the order of 100 kilometers per hour, for example. In the open ocean, tsunami waves have
a barely noticeable height in the centimeter region, but as they approach shore they can
become up to 20 meters tall. Figure 4.2 shows the elevation of the earth. For our purposes
we are particularly interested in the earth’s bathymetry, i. e. the topography below sea
level. It is clearly visible that the ocean floor near continents tends to be relatively shallow
(continental shelf, red). From this region a steep cliff leads to a deeper oceanic layer
(abyssal plains, blue and purple). Landslides at these cliffs can cause strong tsunamis, as
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Figure 4.2: Topography of the earth. Taken from [29].

mentioned above. The deep layer contains trenches which extend much further down, the
famous Mariana trench being the most extreme example. It harbors the deepest point on
earth about 11 kilometers below the sea’s surface. Between the shallow and the deep layer
there exist areas of mid-level elevation (mid-ocean ridges, green and yellow) that can be
found at boundaries of tectonic plates where lava rises up to form underwater mountain
ranges.

5 Background from Fluid Dynamics

This section recalls some of the mathematics that is commonly used to model fluids such as
water or air. The underlying framework is that of continuum mechanics and our description
of these topics is inspired by [11] and [17]. We use the Eulerian viewpoint of fluids in which
a reference system that is fixed in space is studied (instead of moving the frame to follow
a fluid parcel around wherever it is advected) [30]. To this end, let Ω Ď R3 be a fixed set
inside of a fluid which flows through it during a time t P r0, T s where T ą 0 denotes the end
of this time period. We assume Ω to be a “well-behaved” subset by which we mean that it
fulfills all the requirements of the theorems that we wish to apply to it (namely those from
section 2). We call such sets control volumes. The flow through Ω is then characterized by
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three functions:

u : Ωˆ r0, T s ÝÑ R3 (velocity),

p : Ωˆ r0, T s ÝÑ R (pressure),

% : Ωˆ r0, T s ÝÑ R (density).

If x “ px, y, zqT P Ω denotes an arbitrary point in space and t P r0, T s denotes an arbitrary
time, then the components of velocity will be denoted upx, tq “ pupx, tq, vpx, tq, wpx, tqqT.
These are the standard labeling conventions in fluid dynamics, so we will stick with them,
even though they might give rise to some confusion: Notice that x is the position vector
while x is its first component and hence a scalar. The same goes for upx, tq and upx, tq.
Recall that vectors will always be set in bold in this thesis.

The basic assumption of continuum mechanics is that the modeled substance is con-
tinuous, i. e., not made of atoms but infinitely divisible. Given that a cubic centimeter of
a typical fluid like air or water is filled with roughly 1023 molecules (Avogadro’s number),
this assumption does not seem too far-fetched. In addition, we will require the functions
u, p and % to be sufficiently smooth. This is necessary to obtain differential equations, but
not their weak forms as discussed in section 3.

Our goal for the remainder of this section will be the derivation of two basic partial
differential equations that govern the motion of fluids. Both equations will be based on
conservation laws: the first on conservation of mass and the second on conservation of
momentum.

The continuity equation

Notice that the mass inside of Ω changes with time as the fluid flows in and out of it. In
fact, mass is a function of time that is given via the volume integral

ż

Ω

%px, tq dx.

If npxq denotes the outward unit normal vector at the point x on the surface of Ω (i. e.
x P BΩ), then the flow of fluid out(!) of BΩ as a function of time is given via the scalar-
valued surface integral

ż

BΩ

%px, tqupx, tq ¨ npxq ds

where ¨ : R3 ˆR3 Ñ R denotes the standard Euclidean inner product. Let us now assume
conservation of mass, i. e., matter is neither created nor destroyed inside of the fluid. This
means that the change of mass in Ω has to be due to the flow of fluid into(!) Ω across BΩ.
Dropping the variables for the sake of space, this means

d

dt

ˆ
ż

Ω

% dx

˙

“ ´

ż

BΩ

%u ¨ n ds. (5.1)

We can use Gauss’ integral theorem 2.2 on the right side of (5.1) to get

ż

BΩ

%u ¨ n ds “

ż

Ω

∇ ¨ p%uq dx, (5.2)
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where ∇ ¨ p%uq “ divp%uq denotes the divergence as discussed in section 2. When we plug
(5.2) into (5.1), we receive

d

dt

ˆ
ż

Ω

% dx

˙

“ ´

ż

Ω

∇ ¨ p%uq dx

and since we assumed % to be sufficiently smooth, the derivative may be carried out inside
of the integral to give

ż

Ω

ˆ

B%

Bt
`∇ ¨ p%uq

˙

dx “ 0. (5.3)

Since Ω Ď R3 was arbitrary and the integrand is continuous (% and u are sufficiently
smooth by assumption), it is easy to see that (5.3) implies

B%

Bt
`∇ ¨ p%uq “ 0. (5.4)

Equations (5.3) and (5.4) are the integral and differential form of the so-called continuity
equation.

The Euler equations

Recall that according to Newton’s second law we have conservation of momentum, i. e.

change of momentum of fluid in Ω

“ sum of all acting forces on fluid in Ω

` rate of flow of momentum across BΩ into Ω

(5.5)

(the second summand arises from the fact that we fixed our volume Ω). The momentum
vector of the fluid in Ω as a function of time is given via the volume integral

ż

Ω

%px, tqupx, tq dx

and the rate of momentum flow over the boundary is given via the vector-valued surface
integral

´

ż

BΩ

%px, tqupx, tq
`

upx, tq ¨ npxq
˘

ds

where npxq is again the outward-facing unit normal vector on x P BΩ.
As for the forces, we distinguish two different types: So-called body forces have an

external source and are roughly the same for all particles. They can be expressed in terms
of a volume integral

ż

Ω

%px, tqfpxq dx

where f : Ω Ñ R3 is the body force acceleration (=force per unit mass). Common examples
of body forces are gravity, the coriolis force aswell as electric or magnetic forces. The second
type of forces are those that act at the surface of the volume, so-called contact forces, that
are due to the internal interaction between nearby fluid molecules. In general, one would
consider both pressure and viscosity (=internal friction). Here we will focus on the inviscid
case only. This means our derivation no longer applies to substances like honey or lava,
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but the fluid at the center of this thesis, namely water, is still being portrayed accurately.
The contact force vector due to pressure can be expressed via the surface integral

ż

BΩ

ppx, tqnpxq ds.

We emphasize again that, by definition, n points outward of Ω.
We can now formulate (5.5) mathematically. Once more dropping the variables for the

sake of clarity, we get

d

dt

ˆ
ż

Ω

%u dx

˙

“

„
ż

Ω

%f dx´

ż

BΩ

pn ds



´

ż

BΩ

%upu ¨ nq ds. (5.6)

Let us transform the surface integrals into volume integrals to simplify this further: For the
contact force Gauss’ integral theorem 2.3 yields a reformulation in terms of the pressure
gradient ∇p to give

ż

BΩ

ppx, tqnpxq ds “

ż

Ω

∇ppx, tq dx

and for the flow of momentum lemma 2.4 shows
ż

BΩ

%px, tqupx, tq
`

upx, tq ¨ npxq
˘

ds “

ż

Ω

∇ ¨
`

r%px, tqupx, tqs b upx, tq
˘

dx

where b is the dyadic product which outputs a matrix and ∇¨ “ div its divergence (as
defined in section 2). So (5.6) turns into

ż

Ω

ˆ

B

Bt
p%uq `∇ ¨ p%ub uq `∇p

˙

dx “

ż

Ω

%f dx, (5.7)

if we use the smoothness of %u and rearrange, again dropping the variables for the sake of
readability. Just like before this integral form implies the differential form

B

Bt
p%uq `∇ ¨ p%ub uq `∇p “ %f (5.8)

under the sufficiently-strong smoothness assumptions for all involved functions. Equations
(5.7) and (5.8) are the integral and differential form of the so-called Euler equations. Writ-
ten out in their components, they include three scalar partial differential equations (one
for each component of the momentum vector).

The attentive reader will surely have noticed that our derivation of the integral forms
has actually already relied on smoothness assumptions (we used Gauss’ integral theorem).
We note that it is possible to derive the integral forms directly without prior smoothness
assumptions, too. However, this requires a certain amount of care and is hence a more
involved process. The interested reader may find a detailed discussion in the book [6] by
Chorin and Marsden.

We end this section with a remark about the viscous case of the Euler equation.

Remark 5.1 (Navier-Stokes equations)
In our derivation of the Euler equations (5.8) above, we omitted the contact forces due to
internal friction. The more general model that considers both pressure and viscosity leads
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to the so-called Navier-Stokes equations. These are often considered the most fundamental
equations of fluid dynamics, modeling everything from gases, water and oil to phenomena
like the flow of air around the wing of an airplane, ocean waves colliding at shore or the
movement of glaciers. Unfortunately, solving the Navier-Stokes equations is notoriously
difficult. For this reason certain simplifications (like the Euler equations) have received
much attention. For the purposes of this thesis, the Euler equation will suffice to derive
the shallow-water equations in the following sections. �

6 The Setting of Shallow-Water Theory

This section introduces the modeling framework from which we will be able to derive the
shallow-water equations later on. To have a concrete visual in front of us, we will phrase
everything in the context of tsunami modeling. The adaptation to different applications (cf.
section 4) should be straight forward. Our notation will closely follow that of Randall
LeVeque, David George and Marsha Berger who have famously investigated the
numerical simulation of tsunamis with finite-volume methods [22].

The derivation of the full set of two-dimensional shallow water equations will take the
following steps:

1. Introducing the model

2. Simplifying the governing equations for incompressible flow

3. Analyzing the scales of the governing equations and neglecting small terms

4. Formulating boundary conditions

5. Removing the vertical components by depth-averaging

Since this entire process is somewhat lengthy, it is split into this and the next section. Here
we deal with steps 1., 2. and 3. in which our goal will be to remove the vertical velocity
component w from the governing equations. The following section will then finish these
arguments. Our presentation is a combination of that in [31] and [28].

To set the scene, we consider a right-handed coordinate system where x and y denote
the horizontal and z the vertical axis. As usual, we combine them into a vector x “

px, y, zqT P R3. The geometry that we have in mind is shown in figure 6.1. A function
px, y, tq ÞÑ bpx, y, tq ě 0 models the height of a bottom layer, measured over an underlying
reference level z “ 0, that depends both on the horizontal location px, yq and on time t ą 0.
Above this ground layer we have some water of height hpx, y, tq. The sum of the bottom
elevation and the wave height

ηpx, y, tq :“ bpx, y, tq ` hpx, y, tq

gives us the z-coordinate of the water surface in our reference frame. We will refere to ηs as
the average depth of the ocean. Places where bpx, y, tq ´ ηs ă 0 correspond to bathymetry
and places where bpx, y, tq´ ηs ą 0 to topography. Notice that our tsunami framing leaves
us no other choice but to view b as a function of time, if we want to model earthquakes.
However, we can get around this by including the wave-inducing earthquake disturbance
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Figure 6.1: Geometry of the shallow-water model for tsunamis.

in the initial wave height. Therefore we may in fact assume b to be time-independent, i. e.
bpx, y, tq “ bpx, yq for all t ą 0, without loss of generality. At each point x inside of the
water we have a water velocity u “ pupx, tq, vpx, tq, wpx, tqqT and our derivation’s final
result will be a set of differential equations from which the horizontal velocities u, v and
the wave height h can be deduced.

In all of our discussions we shall consider ocean water to be incompressible, i. e., its
density % is not a function of pressure. In fact, we will go even further and just assume it
to be constant. In reality it could still vary with other factors like the temperature or the
salinity of the water, but these may safely be ignored in most cases [19, Subsection 1.2.3].
This concludes step 1. of our derivation.

The water in our scenario must obey the equations from section 5. The continuity
equation (5.4) takes the form

∇ ¨ upx, tq “ 0 (6.1)

because density was assumed to be constant. To see what shape the Euler equations (5.8)
assume, we must first examine the body forces in our scenario. We will only consider
gravity f :“ g “ p0, 0,´gqT here, but discuss this further in section 8. The letter g refers
to the acceleration due to gravity at the surface of the earth. This value is a constant
that can be measured. By dividing by the density (which is constant by assumption) and
rearranging, the Euler equations then take the form

Bu

Bt
`∇ ¨ pub uq “ ´1

%
∇p` g. (6.2)

Both equations hold for all t ą 0 where x, y P R with bpx, yq ď z ď ηpx, y, tq, which is to
say inside of the ocean. In their full form (6.1) and (6.2) yield the system

Bu

Bx
`
Bv

By
`
Bw

Bz
“ 0, (6.3)

Bu

Bt
` u

Bu

Bx
` v

Bu

By
` w

Bu

Bz
“ ´

1

%

Bp

Bx
, (6.4)

Bv

Bt
` u

Bv

Bx
` v

Bv

By
` w

Bv

Bz
“ ´

1

%

Bp

By
, (6.5)



21 II. The Shallow-Water Equations

Bw

Bt
` u

Bw

Bx
` v

Bw

By
` w

Bw

Bz
“ ´

1

%

Bp

Bz
´ g, (6.6)

thus bringing step 2. to an end.
We next turn our attention to the scales of the governing equations. The idea is to

gain a rough order-of-magnitude estimate for most of the terms in the equations above. If
some of them turn out to be very small, we can save ourselves much computational work
by neglecting them. The scales that we can infer from our real-world tsunami scenario are

horizontal extend: L “ 100 km,

vertical extend: H “ 1 km,

horizontal velocity: U “ V “ 100 km
h
,

time-scale: T “ L{U “ 1 h.

It is important to note that these are not to be understood as the precise values of x, y, z, u, v
and t. It is okay for a wave to travel for over 10 hours, for example. But we would not
expect it to disappear after mere seconds or microseconds. In addition, we use the following
values

g “ 9.81 m
s2
“ 127000 km

h2 , % “ 1.03 g
cm3 “ 1.03ˆ 1012 kg

km3 ,

for the gravitational acceleration and the density of ocean water (we will see later on that
we actually do not need a concrete value for %). The fundamental assumption of shallow-
water theory is that H is much smaller than L, so that H{L ! 1. What does small mean
in this case? According to [31] a suitable upper limit is given via H{L ă 0.05, so we may
safely assume our tsunami scenario to be covered by shallow-water theory.

So far we cannot conduct a full scale analysis of the governing equations (6.3)–(6.6)
because we are still missing the scale of W among others. Luckily, its magnitude can be
deduced from what we already know. To this end, notice that

rxs “ rys “ L “ 100 km, rzs “ H “ 1 km, rus “ rvs “ U “ V “ 100 km
h
.

So we expect a rough dimensional estimate of the first two accelerations in the continuity
equation (6.3) to be

„

Bu

Bx



9
U

L
and

„

Bv

By



9
U

L
.

There is no ground for thinking that these two summands would cancel each other, so it is
reasonable to assume that their sum is indeed of size U{L itself. In order for (6.3) to hold
then, we would require Bw{Bz to be of magnitude U{L, too. This implies

rws “ W 9
U

L
H “ 1 km

h
.

So rws turns out to be rather small compared to rus “ rvs “ 100 km{h which means there
is hope for simplifications on the horizon. To this end, let us view the vertical momentum
equation (6.6) since it involves w the most: The terms on the left all turn out to be of the
same (small) size:

„

Bw

Bt



9
1 km

h

1 h
“ 1 km

h2 ,

„

u
Bw

Bx



9 100 km
h

1km
h

100 km
“ 1 km

h2 ,

„

v
Bw

By



9 100 km
h

1km
h

100 km
“ 1 km

h2 ,

„

w
Bw

Bz



9 1 km
h

1km
h

1 km
“ 1 km

h2 .
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At the same time we know that g is on the order of 105 km{h2 compared to which the
terms on the left are negligibly small. This allows us to simplify equation (6.6) to so-called
hydrostatic balance

Bp

Bz
“ ´%g.

In physics hydrostasis describes a scenario where the upward pressure forces exactly bal-
ance out the downward gravitational and pressure forces. This concludes step 3. in our
derivation of the shallow-water equations. After we have now eliminated the vertical ve-
locity component by method of scale analysis, the next section will show how we can rid
ourselves of the vertical dependencies of u, v and h, too.

7 Derivation of the Shallow-Water Equations

We spent the last section simplifying the continuity equation and the Euler equations from
section 5 in the special scenario that is pictured in figure 6.1. To this end, we used the
incompressibility of water and the shallow-water assumption that the vertical scale is small
against the horizontal one. The final set of partial differential equations that we ended up
with was

Bu

Bx
`
Bv

By
`
Bw

Bz
“ 0, (7.1)

Bu

Bt
` u

Bu

Bx
` v

Bu

By
` w

Bu

Bz
“ ´

1

%

Bp

Bx
, (7.2)

Bv

Bt
` u

Bv

Bx
` v

Bv

By
` w

Bv

Bz
“ ´

1

%

Bp

By
, (7.3)

Bp

Bz
“ ´%g, (7.4)

using the notation from the previous section which will not be repeated here. The first
equation corresponds to conservation of mass and the other three to conservation of mo-
mentum. This section’s goal is to use these equations as a starting point for the derivation
of the titular shallow-water equations. While the last section eliminated the vertical com-
ponent of velocity, this one is dedicated to removing the vertical component of position
(the z-component) from the horizontal velocities u and v. Our description will loosely
follow section 8.2 of [24].

In terms of the recipe from the previous section, we now enter step 4. by considering
the bottom and surface boundary conditions. At the bottom z “ bpx, yq we encounter an
impenetrable boundary, i. e., no fluid can pass through the floor into the ground. This
implies that the velocity component of u in the direction normal to the ground must
vanish. It is well-known that a normal vector to such an implicitly-defined surface is given
by npx, yq :“ pBb{Bx, Bb{By,´1qT [8, Section 10.8]. Therefore the gradient of the bottom
topography (i. e., how steep the ocean floor is) plays a role here. The component of u that
points in the direction of n can then be found via their dot product u ¨ n which must
vanish by the impenetrability assumption:

0
!
“ u ¨ n “ u|z“b

Bb

Bx
` v|z“b

Bb

By
´ w|z“b (7.5)
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where the notation |z“ denotes an evaluation of the function at a given z-value, e. g. w|z“b “
wpx, y, bpx, yqq. This is our bottom boundary condition [31].

At the surface z “ ηpx, y, tq “ bpx, yq`hpx, y, tq we encounter a free boundary between
two fluids: water on the bottom and air on the top. Our first condition will be that the
pressure function is continuous here, so that

ppx, y, ηpx, y, tq, tq “ pa (7.6)

where pa is the atmospheric pressure. (In reality this neglects surface tension and wind
[17, Section 1.2].) For the sake of simplicity, we will assume this value to be constant;
many texts on oceanography actually choose to omit it completely. (In reality atmospheric
pressure varies both with space and time. To name just one example: The passage of
pressure regions can be used to model the movements of storms [17, Section 1.2].) Our
second condition will be that fluid particles cannot flow through the sea surface from the
water into the air. (In reality these effects do exist and are comprised of precipitation,
evaporation and runoff as well as effects related to ice [19, Subsection 1.3.2].) This implies
that water particles on the surface stay there for eternity. The surface thus forms an
impenetrable boundary layer between the ocean and the atmosphere. The difference to
the bottom boundary condition from before is that the position of this layer may now vary
with time. To model this, let us view a path rptq :“ px̂ptq, ŷptq, ẑptqqT of a fluid particle
which remains in the surface layer for all times t ą 0, i. e., the components of r obey the
relationship

ẑptq “ η
`

x̂ptq, ŷptq, t
˘

.

We can differentiate this identity using the chain rule to find

ẑ1ptq “ ∇η
`

x̂ptq, ŷptq, t
˘

¨
B

Bt

`

x̂ptq, ŷptq, t
˘T

“
Bη

Bx

`

x̂ptq, ŷptq, t
˘

x̂1ptq `
Bη

By

`

x̂ptq, ŷptq, t
˘

ŷ1ptq `
Bη

Bt

`

x̂ptq, ŷptq, t
˘

.

Now since x̂1 “ u, ŷ1 “ v, and ẑ1 “ w this implies

w|z“η “
Bη

Bt
` u|z“η

Bη

Bx
` v|z“η

Bη

By
(7.7)

which is our boundary condition at the surface. This ends step 4.
Now we turn to the last step in which we finally derive the actual shallow-water equa-

tions. The quintessential idea will be to remove the z-dependence from the velocity com-
ponents by averaging the respective functions from the bottom z “ bpx, yq to the surface
z “ ηpx, y, tq. To this end, let us introduce the averages

upx, y, tq :“
1

hpx, y, tq

ż ηpx,y,tq

bpx,y,tq

upx, y, z, tq dz,

vpx, y, tq :“
1

hpx, y, tq

ż ηpx,y,tq

bpx,y,tq

vpx, y, z, tq dz.

(7.8)

Notice that neither u nor v depend on z while both u and v do. The final ingredient for our
derivation is Leibniz’ parameter integral rule which explains how to differentiate under the
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integral sign in the case where the integration limits are themselves functions that vary.
One finds that

d

dx

˜

ż bpxq

apxq

fpx, tq dt

¸

“ f
`

x, bpxq
˘

b1pxq ´ f
`

x, apxq
˘

a1pxq `

ż bpxq

apxq

Bf

Bx
px, tq dt

Here f : rα, βs ˆ rγ, δs Ñ R and a, b : rα, βs Ñ rγ, δs are continuously-differentiable
functions and the identity holds for all x P sα, βr. With it, we can now attack the continuity
equation (7.1) by integrating over z:

0 “

ż η

b

Bu

Bx
`
Bv

By
`
Bw

Bz
dz

“

ż η

b

Bu

Bx
dz `

ż η

b

Bv

By
dz ` w|z“η ´ w|z“b

“
B

Bx

ˆ
ż η

b

u dz

˙

´ u|z“η
Bη

Bx
` u|z“b

Bb

Bx
`
B

By

ˆ
ż η

b

u dz

˙

´ u|z“η
Bη

By
` u|z“b

Bb

By

` w|z“η ´ w|z“b

“
Bη

Bt
`
B

Bx
phuq `

B

By
phvq

where the last equality follows by the boundary conditions (7.5) and (7.7) as well as the
definition of u and v. Since b is time-independent and η “ b` h, we can rewrite this as

B

Bt
h`

B

Bx
phuq `

B

By
phvq “ 0. (7.9)

Equation (7.9) is the conservation of mass part of the shallow-water equations. Notice
that it contains u, v and h, but not w and none of these functions depend on the vertical
component z.

Our next step is to integrate the hydrostatic balance equation (7.4) using the boundary
condition (7.6):

ppx, y, z, tq “ pa ´

ż ηpx,y,tq

z

Bp

Bz̃
px, y, z̃, tq dz̃

“ pa `

ż ηpx,y,tq

z

%g dz̃

“ pa ` %g
`

ηpx, y, zq ´ z
˘

.

This representation allows the determination of the partial derivatives in equations (7.2)
and (7.3), namely

Bp

Bx
px, y, z, tq “ %g

Bη

Bx
px, y, tq and

Bp

By
px, y, z, tq “ %g

Bη

By
px, y, tq.

Notice that neither term actually depends on z. The corresponding differential equations
then reads

Bu

Bt
` u

Bu

Bx
` v

Bu

By
` w

Bu

Bz
“ ´g

Bη

Bx
, (7.10)

Bv

Bt
` u

Bv

Bx
` v

Bv

By
` w

Bv

Bz
“ ´g

Bη

By
. (7.11)
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As a welcome side-effect, the density drops out everywhere and therefore does not need to
be measured.

The strategy is now the same as before: We integrate both equations (7.10) and (7.11)
from the bottom z “ bpx, yq to the surface z “ ηpx, y, tq “ bpx, yq ` hpx, y, tq. We go
over the details only for the x-direction. The y-direction can be treated similarly. The
procedure is then to address what happens to each term of the momentum equation in
vertical integration individually [1]. But first we reformulate the left side of the integration
by adding an intelligent zero with the help of (7.1) and the product rule:

ż η

b

Bu

Bt
` u

Bu

Bx
` v

Bu

By
` w

Bu

Bz
dz

“

ż η

b

Bu

Bt
` u

Bu

Bx
` v

Bu

By
` w

Bu

Bz
` u

ˆ

Bu

Bx
`
Bv

By
`
Bw

Bz

˙

dz

“

ż η

b

Bu

Bt
`

„

2u
Bu

Bx



`

„

u
Bv

By
` v

Bu

By



`

„

u
Bw

Bz
` w

Bu

Bz



dz

“

ż η

b

B

Bt
u dz

loooomoooon

“:A

`

ż η

b

B

Bx
u2 dz

looooomooooon

“:B

`

ż η

b

B

By
puvq dz

loooooomoooooon

“:C

`

ż η

b

B

Bz
puwq dz

looooooomooooooon

“:D

where A, B, C and D are the terms to be examined on the left side and

E :“ ´g

ż η

b

Bη

Bx
dz

is the term on the right. Most of these terms can be broken up using the Leibniz rule as
before. The results of the integrations are

A “

ż η

b

B

Bt
u dz “

B

Bt

ˆ
ż η

b

u dz

˙

´ u|z“η
Bη

Bt
, (7.12)

B “

ż η

b

B

Bx
u2 dz “

B

Bx

ˆ
ż η

b

u2 dz

˙

` u2
|z“b

Bb

Bx
´ u2

|z“η
Bη

Bx
, (7.13)

C “

ż η

b

B

By
puvq dz “

B

By

ˆ
ż η

b

puvq dz

˙

` puvq|z“b
Bb

By
´ puvq|z“η

Bη

By
, (7.14)

D “

ż η

b

B

Bz
puwq dz “ puwq|z“η ´ puwq|z“b, (7.15)

E “ ´g

ż η

b

Bη

Bx
dz “ ´g

Bη

Bx
pη ´ bq “ ´gh

Bη

Bx
, (7.16)

where for (7.12) we used that b does not depend on time, for (7.15) we used the fundamental
theorem of analysis and for (7.16) we used that η does not depend on z as well as η “ b`h.
So in total everything rearranges to

B

Bt

ˆ
ż η

b

u dz

˙

`
B

Bx

ˆ
ż η

b

u2 dz

˙

`
B

By

ˆ
ż η

b

uv dz

˙

´ u|z“η

„

Bη

Bt
` u|z“η

Bη

Bx
` v|z“η

Bη

By
´ w|z“η



` u|z“b

„

u|z“η
Bb

Bx
` v|z“b

Bb

By
´ w|z“b


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“

ż η

b

Bu

Bt
` u

Bu

Bx
` v

Bu

By
` w

Bu

Bz
dz

“ ´g

ż η

b

Bη

Bx
dz

“ ´gh
Bη

Bx
.

The first square bracket vanishes by the surface boundary condition (7.7) and the second
one by the bottom one (7.5). If we use

uvpx, y, tq :“
1

hpx, y, tq

ż ηpx,y,tq

bpx,y,tq

upx, y, z, tqvpx, y, z, tq dz

and

u2px, y, tq :“
1

hpx, y, tq

ż ηpx,y,tq

bpx,y,tq

upx, y, z, tq2 dz

as depth-averaged products in addition to u and v from (7.8), we find the partial differential
equation

B

Bt
phuq `

B

Bx
phu2q `

B

By
phuvq “ ´gh

B

Bx
η.

Since η “ b` h and hBh
Bx
“ B

Bx
p1

2
h2q by the product rule, we can reformulate the right side

in terms of h to give

B

Bt
phuq `

B

Bx
phu2 `

1

2
gh2
q `

B

By
phuvq “ ´gh

B

Bx
b. (7.17)

The corresponding equation for the y-direction of momentum is derived the same way and
has the form

B

Bt
phvq `

B

Bx
phuvq `

B

By
phv2 `

1

2
gh2
q “ ´gh

B

By
b, (7.18)

where v2 is defined analogously to u2. This concludes the depth integration.

You would be forgiven to think that (7.9), (7.17) and (7.18) are the shallow-water
equations. They sure look like what we set out for. But we must be precise and looks can
be deceiving: Said system is not a differential equation for u, v and h at all! Notice that in
general the mixed averages are not the same as the product of the averages, i. e. u2 ‰ u2,
v2 ‰ v2 and uv ‰ u v. They need to be expanded to give

B

Bx
phu2q “

B

Bx
phu2

q `
B

Bx

ˆ
ż η

b

`

u´ u
˘2

dz

˙

,

B

Bx
phv2q “

B

Bx
phv2

q `
B

Bx

ˆ
ż η

b

`

v ´ v
˘2

dz

˙

and
B

Bx
phuvq “

B

Bx
phu vq `

B

Bx

ˆ
ż η

b

`

u´ u
˘`

v ´ v
˘

dz

˙

.
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Only after neglecting the integral terms are we able to formulate the actual shallow-water
system which we state here in full for the sake of completeness:

B

Bt
h`

B

Bx
phuq `

B

By
phvq “ 0, (7.19)

B

Bt
phuq `

B

Bx
phu2

`
1

2
gh2
q `

B

By
phu vq “ ´gh

B

Bx
b, (7.20)

B

Bt
phvq `

B

Bx
phu vq `

B

By
phv2

`
1

2
gh2
q “ ´gh

B

By
b. (7.21)

Alternatively one can include the integral terms inside of a friction term. (Friction was
already neglected in the derivation of the Euler equation, though.) See [3] for more details
and a discussion of how reasonable this assumption is. In terms of the recipe from the
previous section step 5. is hereby finished which concludes the derivation.

8 Discussion of the Shallow-Water Model

In the previous section we obtained the two-dimensional shallow-water system (recall that
we defined indices to symbol differentiation, e. g. pqt :“ B{Btq

ht ` phuqx ` phvqy “ 0, (8.1)

phuqt ` phu
2
` 1

2
gh2
qx ` phuvqy “ ´ghbx, (8.2)

phvqt ` phuvqx ` phv
2
` 1

2
gh2
qy “ ´ghby, (8.3)

for waves of height px, y, tq ÞÑ hpx, y, tq and horizontal speeds px, y, tq ÞÑ upx, y, tq, px, y, tq ÞÑ
vpx, y, tq where px, yq ÞÑ bpx, yq describes the bottom profile and g « 9.81 m

s2
is the accel-

eration due to gravity (cf. figure 6.1). The underlying shallow-water assumption was that
the horizontal scales are much larger than the vertical one. Here it is still assumed that u
and v are depth-averaged, even though this is typically omitted from the notation. Recall
that the first equation represents conservation of mass while the other two were derived
from conservation of momentum. This section will investigate the shallow-water system
further and comment on typical extensions to the model. It also serves as an outlook to
several topics that this thesis could not cover. We refer to the respective literature in each
case. As a general reference one can take [22] and chapter 1 of [15].

We first look at how the shallow-water equations tie into the framework of hyper-
bolic conservation laws from section 3. To this end, let us introduce the notation q :“
pq1, q2, q3q

T :“ ph, hu, hvqT for the conserved quantities. To obtain a balance law form

qt ` fpqqx ` gpqqy “ ψpq, x, yq (8.4)

of the system (8.1), (8.2), (8.3) we also set

fpqq :“

¨

˝

q2

q2
2{q1 `

1
2
gq2

1

q2q3{q1

˛

‚“

¨

˝

hu
hu2 ` 1

2
gh2

huv

˛

‚
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and

gpqq :“

¨

˝

q3

q2q3{q1

q2
3{q1 `

1
2
gq2

1

˛

‚“

¨

˝

hv
huv

hv2 ` 1
2
gh2

˛

‚

for the fluxes as well as

ψpq, x, yq :“ p0,´gq1bx,´gq1byq
T
“ p0,´ghbx,´ghbyq

T

for the source term. If the bathymetry is approximately flat, the source vector ψ disappears
and (8.4) becomes a homogeneous system.

For numerical considerations we will also frequently study the one-dimensional shallow-
water equations

ht ` phuqx “ 0, (8.5)

phuqt ` phu
2
` 1

2
gh2
qx “ ´ghbx. (8.6)

In this case the y-direction is dropped, so that the functions are px, tq ÞÑ hpx, tq, px, tq ÞÑ
upx, tq and x ÞÑ bpxq. This system was first derived by Adhémar Jean Claude Barré
de Saint-Venant and is thus sometimes referred to as the Saint-Venant equations. (Some
authors use this name for the two-dimensional version, too, even though Saint-Venant did
not study it.) Its original purpose was to model open-channel flow, particularly that in
rivers [13]. The one-dimensional version can also be written in conservation form

qt ` fpqqx “ ψpq, xq

by defining the vector q :“ pq1, q2q
T :“ ph, huqT for the conserved variables and

fpqq :“

ˆ

q2

q2
2{q1 `

1
2
gq2

1

˙

“

ˆ

hu
hu2 ` 1

2
gh2

˙

, ψpq, xq :“

ˆ

0
´gq1bx

˙

“

ˆ

0
´ghbx

˙

for the flux and the source term.
Throughout the rest of this thesis we will mainly work with the one-dimensional system

qt ` fpqqx “ 0 for all px, tq P Rˆ
‰

t,8
“

(8.7)

for a given time t ě 0. It is therefore worth examining its theoretical properties. First,
we note that, given a smooth solution, the conservation law (8.7) can be rewritten in
quasilinear form

qt ` f
1
pqqqx “ 0

where the Jacobian matrix is given by

f 1pqq “

ˆ

0 1
´pq2{q1q

2 ` gq1 2q2{q1

˙

“

ˆ

0 1
´u2 ` gh 2u

˙

.

Simple linear algebra shows that its eigenvalues are

λ1 “ u´
a

gh and λ2 “ u`
a

gh

with corresponding eigenvectors

r1 “

ˆ

1
u´

?
gh

˙

and r2 “

ˆ

1
u`

?
gh

˙

.
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For physically-relevant depths h ě 0 the eigenvalues remain real-valued and as long as
h ą 0 they are actually distinct. In particular, this shows that (8.7) is a hyperbolic
equation.

In the following chapters we will need the results of the Riemann problem for the
one-dimensional shallow-water equations which is obtained when combining (8.7) with
piecewise constant initial conditions

qpx, tq “

"

q`, if x ă x,
qr, if x ą x

*

for all x P R

with two given vectors q`, qr P R2 and a given point x P R and times t ą 0. This problem
can be solved completely, see [28]. However, we cannot present these ideas here in their
full form. For our purposes a rough understanding will suffice. One finds that that two
waves always separate three constant states. Each wave is associated with an eigenvector
of f 1pqq; the eigenvalues are the speeds of propagation. The wave corresponding to the first
eigenvector is usually referred to as the 1-wave and the wave corresponding to the second
the 2-wave. Each wave may be a shock or a rarefaction. Between the two constant states
q` and qr one finds a constant middle state qm. Figure 8.1 shows a 1-rarefaction and a 2-
shock. We note that the figure presents the case where one wave is going in either direction.

upx, T q

uru` x

t

T

x

q`

qm

qr

t

hpx, T q

hr

h`

x

Rarefaction wave

Shock wave

Figure 8.1: Typical solution of a Riemann problem for the one-dimensional
shallow-water equations at some time T ą t. Adapted from [5].

This need not be the case, however. It is possible for both to go left (if u ă ´
?
gh) or
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right (if u ą
?
gh), corresponding to so-called supercritical flow (analogous to supersonic

flow in gas dynamics). In our applications this is almost never needed – they correspond
to the subcritical case (λ1 ă 0 ă λ2). For tsunamis, supercritical flow occurs only for very
shallow water near the shore. The ratio |u|{

?
gh is called the Froude number (analogous

to the Mach number in gas dynamics). It is worth pointing out that these waves travel
at velocities of ˘

?
gh relative to the background velocity u. The speed c :“

?
gh is called

the gravity wave speed (it is analogous to the speed of sound in small-amplitude acoustics).
For tsunami modeling u is typically very small, so that the velocity of propagation mainly
depends on

?
gh and thereby on the depth. For a typical ocean depth of 4 km one finds a

speed of about 200 m
s
“ 720 km

h
. In shallower waters the wave speed decreases. If we take

the depth of the continental shelf (cf. section 4) to be 100 m, then the speed reduces to
about 30 m

s
“ 108 km

h
.

Let us now turn to possible extensions of the shallow-water model. Recall that when
we applied the Euler equations to the tsunami wave setup in section 6, we assumed that
gravity was the only acting body force. This is not accurate on earth. When a particle
moves on a rotating sphere, it experiences a ficticious force, the so-called coriolis force.
This is a byproduct of viewing the particle in an accelerated frame of reference and would
not appear to an outside onlooker in an inertial frame. To account for it in our momentum
equations, we would add a term ´fv to the left side of (8.2) and a term `fu to the left
side of (8.3) where f is the coriolis parameter which depends on the location of the particle
on earth [19]. Fortunately, this force has little effect on applications like the movement
of tsunamis and can thus be neglected. Another ficticious force caused by the rotation of
earth is the centrifugal force which is directed in the opposite direction of gravity. And
while this force does have an effect on the shape of the earth, causing it to look more like
an ellipsoid than a sphere, it can safely be neglected even in cases where the coriolis force
is considered [7].

An idea that naturally ties into that of incorporating effects due to rotation is intro-
ducing curvilinear coordinates (e. g. spherical coordinates). A detailed derivation can be
found in [31]. Interestingly, a two-dimensional problem can turn into a one-dimensional
one, if it exhibits radial symmetry. Such is the case with so-called radial dam break which
is obtained by combining the two-dimensional system (8.1), (8.2), (8.3) with initial data
of the form

hpx, y, 0q :“

"

hinside, if x2 ` y2 ď R2,
houtside, if x2 ` y2 ą R2

*

, phuq0px, yq :“ 0 for all x, y P r´x, xs

where hinside ą houtside ą 0 are two known constants and so is R ą 0. The speeds are ini-
tially set to zero and bathymetry is assumed to be constant. The resulting two-dimensional
system can then be rewritten in a one-dimensional form

ht ` phuqr “ ´
hu
r
,

phuqt ` phu
2
` 1

2
gh2
qr “ ´

hu2

r

(8.8)

using the radial direction r :“
a

x2 ` y2. Here the involved functions are pr, tq ÞÑ hpr, tq
and pr, tq ÞÑ upr, tq. In this case u represents a radial velocity. The full solution is then
obtained by rotating these functions around the vertical axis. Notice how similar (8.8) looks
to the one-dimensional shallow-water system (8.6). Only the source terms are different. In
this case one has ψpq, rq :“ ´1{rphu, hu2qT instead.
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During our initial derivation of the shallow-water equations, we neglected friction terms
(particularly at the ocean floor). If one were to include them, they would appear in the
momentum equations in the form of a drag coefficient Dph, u, vq to give

phuqt ` phu
2
` 1

2
gh2
qx ` phuvqy “ ´ghbx ´Dph, u, vqhu,

phvqt ` phuvqx ` phv
2
` 1

2
gh2
qy “ ´ghby ´Dph, u, vqhv.

A typical profile for the drag function is

Dph, u, vq “ n2gh´7{8
?
u2 ` v2,

where the so-called Manning coefficient n is typically set to be around n “ 0.025 for
tsunami modeling. We did not just omitt this term to simplify the derivation. In deep
water it turns out to be negligibly small compared to the other terms in the momentum
equation. So it is customary to only start considering it close to shore, e. g. in depths
shallower than 100 meters.

One can also consider several layers of fluid that are stacked on top of each other. The
one-dimensional shallow-water equations for two layers take the form

ph1qt ` ph1u1qx “ 0,

ph1u1qt `
`

h1u
2
1 `

1
2
gh2

1

˘

x
“ ´gh1ph2qx ´ gh1bx,

ph2qt ` ph2u2qx “ 0,

ph2u2qt `
`

h2u
2
2 `

1
2
gh2

2

˘

x
“ ´%0gh2ph1qx ´ gh2bx,

where h1, h2 are the depths and u1, u2 the velocities of the upper and lower layer respec-
tively. The function x ÞÑ bpxq is the bottom topography, %0 is the ratio of the densities
(%0 :“ %1{%2 ă 1q between the two fluid layers and g « 9.81 m

s2
is again the acceleration due

to gravity [24]. Typically, the top layer could represent the flow in the upper few hundred

%1

%2

bpxq

h2px, tq

h1px, tq

Figure 8.2: Geometry of the two-layer shallow-water equations. The lower
layer is colored in to represent water. Alternatively it could represent a moving
layer of ocean floor, e. g. during a landslide. Adapted from [30, Figure 3.5].

meteres of the ocean where most of the noticable movement occurs and the lower layer the
deep ocean that hardly moves. One can also turn this on its head and see the two-layer
shallow-water equations as an atmospheric model where the lower layer represents the ac-
tive troposphere and the upper one the inactive stratosphere [30]. In addition, it serves as
a model for tsunamis caused by underwater landslides.
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Not only for tsunamis caused by underwater landslides do we need to augment the
system (8.1), (8.2), (8.3). Different tsunami origins require different adjustments to the
models. Marsha Berger has recently begun to study tsunamis caused by asteroids,
for example. In this case the shallow-water equations are extended by both a stress term
like above and a pressure term which is needed since the asteroid causes a shock wave
infront of it as it enters the atmosphere [4]. By far the most common cause of tsunamis
are suboceanic earthquakes, though, and we do expect their propagation to be modeled
acurately by the standard shallow-water equations.

The shallow-water equations are not the be-all and end-all in terms of tsunami models.
Many different partial differential equations have been used in an attempt to improve
accuracy, see section 5.1 of [10]. It should be noted, however, that higher accuracy typically
comes at the cost of computation time. And time is a valuable resource when issuing
tsunami warnings and evacuating people. The shallow-water equations seem to strike a
good balance between being sufficiently easy to solve to guarantee fast computation and
between being sufficiently complex to model the real world accurately enough.



Chapter III

Finite-Volume Methods

This chapter gives an overview of a special class of numerical methods which were developed
specifically for the solution of hyperbolic conservation laws like the shallow-water equations.
As it turns out, solving the shallow-water system is a relatively difficult task which requires
many advanced tools. Their detailed description would lie beyond the scope of this thesis.
For this reason, we will present a very high-level view throughout this chapter, leaving the
details to the respective literature. Our end goal will be to collect all the necessary tools
to solve the shallow-water equations in one spatial dimension with bathymetry.

The subsequent sections are structured as follows: In section 9 we give a general in-
troduction to the idea of finite-volume methods. As a concrete representative we then
study Godunov-type methods (section 10) which use Riemann problems for their numer-
ical updates. The Riemann problems which appear during a Godunov method are often
too expensive to solve exactly. This motivates the need for approximate Riemann solvers
which are the contents of section 11. And since the treatment of finite-volume methods up
to this point did not include source terms, section 12 will introduce a way to handle these.
All of this discussion culminates in section 13 where we test our algorithms on several
examples.

9 General Derivation of Finite-Volume Methods

Countless algorithms have been developed for the numerical solution of differential equa-
tions. However, not all methods work well for all types of problems. The class of finite-
volume methods were specifically developed for the solution of hyperbolic conservation
laws and are hence a natural choice for the solution of the shallow-water equations. This
section briefly describes the idea behind finite-volume methods. Standard references are
[20] and [27].

Throughout this chapter we will consider a hyperbolic system of m conservation laws
in one spatial dimension

qt ` fpqqx “ ψpq, xq for all px, tq P Rˆ s0,8r ,
qpx, 0q “ q0pxq for all x P R,

(9.1)

where qpx, tq P Rm is the vector of conserved quantities, q0 : R Ñ Rm an initial value,
fpqq P Rm the vector of fluxes and ψpq, xq P Rm the vector of source terms. While q is
unknown, f , q0 and ψ are given. The general derivation of finite-volume methods relies
on the special case where (9.1) is homogeneous, i. e. ψ ” 0. As we have noted before,
this is the original form of a conservation law, wheras the form with the source term is
often called a balance law. Integrating the source terms adequately will be the focus of a
subsequent section.

33
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For numerical considerations, we introduce a discretization of the x-t-plane with a mesh
width ∆x ą 0 and a time step ∆t ą 0. Both values are assumed to be fixed for the sake of
simplicity, though this is by no means necessary. These step sizes allow the introduction
of grid points

xi :“ i∆x, i “ . . . ,´2,´1, 0, 1, 2, . . . ,

tn :“ n∆t, n “ 0, 1, 2, . . .

We will also require the notation

xi˘1{2 “ xi ˘
∆x

2
“

ˆ

i˘
1

2

˙

∆x, i “ . . . ,´2,´1, 0, 1, 2, . . .

to denote the points in the middle of the inveralls rxi, xi`1s and rxi´1, xis respectively.
Around each point xi the interval Ci :“ rxi´1{2, xi`1{2s is called the i-th grid cell. Notice
that from this perspective the points xi˘1{2 are the cell boundaries of Ci. For the sake of
simplicity we will not restate the sets of indices for each occurrence of i and n. Whenever
the reader encounters them, both i P Z and n P N0 are usually implied.

As we have already seen in section 3 the more natural formulation of a conservation
law is not the differential form (9.1), but rather its integral form

d

dt

ˆ
ż

Ci
qpx, tq dx

˙

“ f
`

qpxi´1{2, tq
˘

´ f
`

qpxi`1{2, tq
˘

(9.2)

(cf. equation (3.3)). This is the starting point for the derivation of all finite-volume meth-
ods. To this end, let us begin by integrating (9.2) from tn to tn`1. The result is
ż

Ci
qpx, tn`1q dx´

ż

Ci
qpx, tnq dx “

ż tn`1

tn

f
`

qpxi´1{2, tq
˘

dt´

ż tn`1

tn

f
`

qpxi`1{2, tq
˘

dt (9.3)

which is clearly equivalent to

1

∆x

ż

Ci
qpx, tn`1q dx´

1

∆x

ż

Ci
qpx, tnq dx

“ ´
∆t

∆x

ˆ

1

∆t

ż tn`1

tn

f
`

qpxi`1{2, tq
˘

dt´
1

∆t

ż tn`1

tn

f
`

qpxi´1{2, tq
˘

dt

˙

.

(9.4)

Instead of trying to approximate the solution function q directly, finite-volume methods
instead try to approximate the integral terms in (9.4) for each cell Ci at any given time
tn. This approach is more suitable for discontinuous solutions since it does not rely on q
being defined at every point. The reason that we prefer (9.4) over (9.3) is the following
interpretation: If f : ra, bs Ñ R is any integrable function, then from elementary calculus

it is well-known that 1
b´a

şb

a
fpxq dx can be seen as its average value over the interval ra, bs.

In this sense each term in (9.4) admits a physical interpretation as either a spatial average
of the solution function at a fixed time or as a time average of the flux function at the left
or right boundary point of the i-th cell. It is customary to denote approximations with
upper case and exact values with lower case letters, i. e., we will write

Qn
i «

1

∆x

ż

Ci
qpx, tnq dx “: qni ,

F n
i˘1{2 «

1

∆t

ż tn`1

tn

f
`

qpxi˘1{2, tq
˘

dt “: fni˘1{2.
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Superscripts always indicate the time step and subscripts always the cell. In particular, the
superscript does not signal exponentiation here! With this notation (9.4) can be written
as

qn`1
i “ qni ´

∆t

∆x
pfni`1{2 ´ f

n
i´1{2q

which suggest that our numerical method should be of the form

Qn`1
i “ Qn

i ´
∆t

∆x
pF n

i`1{2 ´ F
n
i´1{2q. (9.5)

The numerical approximation to the exact solution function q is then given as the step

Ci

Qn
i`1

Qn
i

x
xi´1{2

xixi´1 xi`1

xi`1{2

xi`2

Figure 9.1: Numerical approximation to x ÞÑ qpx, tnq. Adapted from [27,
Figure 6.1].

function which is obtained by assigning the value Qn
i to the entire cell Ci at any fixed point

in time tn, cf. figure 9.1.
While the Qn

i term in (9.5) will be known at each point in the iteration (because in
an initial value problem qpx, 0q is known), we have yet to explain how one can suitably

∆x

∆t

x
xi´1{2

tn

tn`1

xi`1{2

xi

Qn
i

F n
i´1{2 F n

i`1{2

Qn`1
i

t

Figure 9.2: Change from time step tn to tn`1 in cell Ci as seen from the x-t-
plane. Adapted from [20, Figure 4.1].

approximate the flux averages. Indeed, the main focus of any specific finite-volume method
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will be a clever procedure to do exactly this. We note, however, that generally one would
hope to find a relationship of the form F n

i´1{2 “ FpQn
i´1,Q

n
i q where F is a so-called

numerical flux function. With it the general finite-volume method (9.5) would take the
form

Qn`1
i “ Qn

i ´
∆t

∆x

“

FpQn
i ,Q

n
i`1q ´ FpQn

i´1,Q
n
i q
‰

.

The following section will showcase concrete examples of such numerical flux functions.
Notice that algorithm (9.5) actually mirrors the conservation law in a way. A first

indication of this is given by rewriting it as

Qn`1
i ´Qn

i

∆t
`
F n
i`1{2 ´ F

n
i´1{2

∆x
“ 0.

This looks like a version of the original conservation law (9.1) where the partial derivatives
were discretized with finite differences. But there is more: In these methods, the change
in the cell’s average value is given by the difference of the fluxes across the boundary of
the cell. In fact, this even remains true, if we consider several cells at once. Between the
I-th and the J-th cell (I, J P Z) we find by summing (9.5) that a telescoping sum emerges
because F n

i`1{2 “ F
n
pi`1q´1{2, namely

J
ÿ

i“I

Qn`1
i ∆x “

J
ÿ

i“I

Qn
i ∆x´∆tpF n

J`1{2 ´ F
n
I´1{2q.

This shows that, no matter how the F n
i˘1{2 are chosen, all of the fluxes cancel except for

the ones at the boundaries. Since the sums represent the numerical approximations to the
integral of q over the entire interval rxI´1{2, xJ`1{2s, this tells us that the change between
cell CI and cell CJ from any point in time tn to the next tn`1 is only due to difference in
flux across the boundaries of said interval. In this sense the numerical solutions actually
mirror the physical features of the actual solution. Methods with this desirable property
are more generally called conservative. Hence, any finite-volume method is conservative
by construction.

We do not have the time to elaborate on the theoretical considerations which usually
surround numerical methods (convergence, speed, stability, et cetera). A thorough discus-
sion is given in chapter 8 of [20]. It is worth noting that the method which is presented here
is only of first order, meaning that it takes a relatively long time to achieve high accuracy.
In many practical applications fast results are a key, however. In this case, schemes of
higher order must be employed.

10 Godunov-Type Methods

In the previous section we derived the general form of a finite-volume method

Qn`1
i “ Qn

i ´
∆t

∆x
pF n

i`1{2 ´ F
n
i´1{2q (10.1)

for the solution of the conservation law (9.1) without source terms. Like in the last section,
every occurrence of i and n is to be understood in the sense of “for all i P Z and all n P N0”.
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This section explores one common method of approximating the numerical fluxes F n
i˘1{2,

the so-called Godunov method. Its fundamental idea is to solve Riemann problems at the
boundaries between the different cells. A more detailed description than ours can be found
in chapter 6 of [27].

To see how Godunov’s method works in detail, let us assume that all cell averages
Qn
i have already been computed at a time tn. To begin, we use these values to define a

piecewise constant function q̃ninitial : RÑ Rm via

q̃ninitialpxq :“ Qn
i for all x P Ci “ rxi´1{2, xi`1{2s (10.2)

(cf. figure 9.1). This function now serves as the initial condition for the intermediate
problem

pq̃nqt ` fpq̃
n
qx “ 0 for all px, tq P Rˆ stn,8r ,

q̃npx, tnq “ q̃
n
initialpxq for all x P R,

(10.3)

which is simply the original conservation law with the now-modified initial data from (10.2).
Its solution function px, tq ÞÑ q̃npx, tq can already be viewed as an approximate solution to
the original conservation law, although we will not use it as such. Notice that the initial
data is essentially a sequence of Riemann problems because q̃ninitial is piecewise-constant.
For example, at the boundary xi´1{2 one has to solve the Riemann problem

q̃t ` fpq̃qx “ 0 for all px, tq P Rˆ stn,8r ,

q̃px, tnq “

"

Qn
i´1, if x ă xi´1{2,

Qn
i , if x ą xi´1{2

*

for all x P R.
(10.4)

Each individual Riemann problem has its own solution wave associated with it. In princi-
ple, one can obtain the exact solution to (10.3) by simply piecing together the respective
solutions of all the Riemann problems at each boundary — given that the waves from
neighboring Riemann problems do not start interacting, that is. We can make sure of this
by choosing a sufficiently small time step ∆t. If λmax denotes the maximum wave velocity
that is encountered at any of the Riemann problems, then we must require

∆t ď
∆x

λmax

(10.5)

for this to be the case, i. e., the fastest characteristic generated at an interface cannot
travel farther than one cell width within one time step. The term CCourant :“ λmax∆t{∆x
is more generally referred to as the Courant number. Hence, our setting requires a Courant
number of at most one. We note that this condition does allow the interaction of waves
from neighboring Riemann problems, as long as they are contained within a fixed mesh
cell. Luckily, there is no need to calculate these interactions explicitly because we only
require the cell average over rtn, tn`1s at a boundary point which is still easy to compute
because the solution’s value there does not change within a cell.

If this is given, then Godunov’s method may be derived as follows. Notice that evalu-
ation of q̃n at tn`1 produces the function x ÞÑ q̃npx, tn`1q. In Godunov’s method the next
iterate is found by averaging this function over each grid cell, i. e.

Qn`1
i :“

1

∆x

ż

Ci
q̃npx, tn`1q dx.
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tn

tn`1

tn

tn`1

(a) (b)

Figure 10.1: Waves from Riemann problems starting from the cell boundaries.
(a) The time step is too large; the waves can cross into the neighboring cell. (b)
The time step obeys the condition (10.5); the waves can interact, but without
crossing into neighboring cells. Figure adapted from [20, Figure 15.1].

This process yields a particular finite-volume method (10.1) where the numerical flux func-
tion is given as

F n
i´1{2 “ FpQn

i´1,Q
n
i q “

1

∆t

ż tn`1

tn

f
`

q̃npxi´1{2, tq
˘

dt. (10.6)

In fact, we can still simplify this somewhat. As we know from the discussions in section
3, the solution of the Riemann problem (10.4) is a similarity solution. As usual we will
denote its solution function with q̃pξ; q`, qrq where

ξ “
x´ xi´1{2

t´ tn

is its characteristic variable, q` is the value on the left side of the discontinuity and qr the
value on the right side. Recall that this implies that q̃ is constant along rays where ξ “ c
for any fixed number c P R. So if we look at the ray along the value c “ 0, then this tells us
the solution of the Riemann problem, i. e. q̃npxi´1{2, tq “ q̃p0;Qn

i´1,Q
n
i q for t P rtn, tn`1s.

Hence the integral in (10.6) is actually taken over a constant value and therefore simplifies
to

F n
i´1{2 “ FpQn

i´1,Q
n
i q “ f

`

q̃p0;Qn
i´1,Q

n
i q
˘

.

Hence, for the application of a Godunov method one needs to be able to compute solutions
to Riemann problems (10.4) or more generally at least approximations to it.

11 Approximate Riemann Solvers

By far the most common computation in a simulation using a Godunov method is the
solution of a Riemann problem. In theory, this can always be done exactly, although
only by an iterative procedure in certain badly-behaved cases. In practice, approximate
solutions are usually preferred for two reasons: First, calculating exact solutions can be
quite expensive and, second, Godunov’s method averages over these results in the end
anyway, making attention to detail hard to justify. In this section we will introduce just
one type of approximate Riemann solver. We note, however, that a great amount of work
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has been dedicated to the creation of different kinds of Riemann solvers. A standard
reference which explains many of these in detail is Toro’s book [27].

We present here the derivation of the so-called HLL solver by Harten, Lax and
van Leer which, while remaining relatively simple to implement, is well-suited for the
computations in this thesis. Its fundamental idea is to assume that the solution consists
of two waves which separate three constant states. This will not cause any problems for
our numerical considerations since we only deal with the shallow-water equations in one
spatial dimension. However, in more general settings (e. g. the shallow-water equations in
two spatial dimensions) it is not always ideal. Its problem is that the assumption of a
two-wave configuration is only correct for a hyperbolic system of two equations. Details
and methods to circumvent this can also be found in Toro’s book.

Let us see how the HLL solver is derived in detail. The setting is as follows. We study
the Riemann problem

qt ` fpqqx “ 0 for all px, tq P Rˆ
‰

t,8
“

,

qpx, tq “

"

q`, if x ă x,
qr, if x ą x

*

for all x P R
(11.1)

for a system of m (possibly non-linear) conservation laws in one spatial dimension. As
usual, q P Rm is the vector of to-be-determined conserved quantities and f : Rm Ñ Rm

the corresponding known flux function. The values q` P Rm and qr P Rm are assumed to
be given. In particular, we have in mind the setting in a subproblem during Godunov’s
method where q` “ Qn

i and qr “ Qn
i`1 for some i P Z and n P N0. As usual, x P R is

a given point in space and t ě 0 a given time. For the sake of simplicity we will assume
x “ t “ 0 throughout this section. Recall from section 3 that the solution of (11.1) is a
similarity solution which means that it depends only on q`, qr and ξ “ x{t.

The first goal of this section is the determination of an approximation Q :“ QHLL « q.
In the HLL ansatz we first estimate the smallest and largest signal velocities s` ă sr in
the solution of the Riemann problem (11.1) with a yet-to-be-discussed method. We then
approximate the Riemman solution by three constant states given as

QHLL
px, tq :“

$

&

%

q`, if x
t
ă s`,

qm, if s` ă
x
t
ă sr,

qr, if x
t
ą sr

,

.

-

for all px, tq P Rˆ s0,8r , (11.2)

where qm is a constant yet-to-be-determined middle state vector. This means that we only

qr
exact

HLL

q`

sr

s`

x

Figure 11.1: Comparison of an exact Riemann solution with its HLL approx-
imation.

view two waves of which the first travels to the left with speed s` ă 0 and the second
travels to the right with speed sr ą 0 (the subsonic case).
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To find the concrete value of qm, we invoke the conservation law over a special control
volume rx`, xrs ˆ r0, T s which is chosen in such a way that x` ď Ts` and xr ě Tsr. Notice
that by construction such a volume is designed in a way which contains the exact solution
of the Riemann problem inside of it. Notice, too, that 0 P rx`, xrs and that

x` Ts`

s`

Tsr

sr

0 xr

x

T

t

x` 0
(b)(a)

qm

xr

x

T

t

q` qr

Figure 11.2: Setup of the HLL solver. (a) Speeds. (b) States. Figure adapted
from [27, Figure 10.2].

qpx`, tq “ q` and qpxr, tq “ qr for t P r0, T s, (11.3)

cf. figure 11.2. The integral formulation of the conservation law over this domain takes the
form (cf. section 3)

ż xr

x`

qpx, T q dx “

ż xr

x`

qpx, 0q dx`

ż T

0

f
`

qpx`, tq
˘

dt´

ż T

0

f
`

qpxr, tq
˘

dt. (11.4)

The right-hand side of (11.4) can actually be simplified, if we use

ż xr

x`

qpx, 0q dx “

ż 0

x`

q` dx`

ż xr

0

qr dx “ xrqr ´ x`q`

which follows from the initial condition in (11.1) in combination with fpqpx`, tqq “ fpq`q
and fpqpxr, tqq “ fpqrq which, in turn, follow from (11.3). In combination this yields the
so-called consistency condition

ż xr

x`

qpx, T q dx “ xrqr ´ x`q` ` T pf` ´ frq (11.5)

where we set f` :“ fpq`q and fr :“ fpqrq as shorthand. Next, we split the left-hand side
of (11.4) into the three segments from figure 11.2 (a), namely

ż xr

x`

qpx, T q dx “

ż Ts`

x`

qpx, T q dx`

ż Tsr

Ts`

qpx, T q dx`

ż xr

Tsr

qpx, T q dx

“ pTs` ´ x`qq` `

ż Tsr

Ts`

qpx, T q dx` pxr ´ Tsrqqr,

(11.6)

where the second equality follows from yet another look at figure 11.2. Since (11.5) is equal
to (11.6), we find by comparing terms that

ż Tsr

Ts`

qpx, T q dx “ T psrqr ´ s`q` ` f` ´ frq.
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To obtain the spatial average over the middle region in figure 11.2 we need only divide by
its length Tsr ´ Ts` to find

1

Tsr ´ Ts`

ż Tsr

Ts`

qpx, T q dx “
srqr ´ s`q` ` f` ´ fr

sr ´ s`

which suggests that the middle state in (11.2) should be chosen as the constant

qm “
srqr ´ s`q` ` f` ´ fr

sr ´ s`
. (11.7)

After inserting (11.7) into (11.2) we can see the HLL solver’s approximation to the Riemann
problem in its full form. We explicitly point out that all calculations up to this point were
exact because they utilized the actual solution of the Riemann problem q instead of the
HLL approximation QHLL. The only necessary ingredient is that we must know the speeds
s` and sr.

Let us now turn to the determination of the associated numerical flux. The flux function
will take the form

F :“

$

&

%

f`, if s` ě 0,
fm, if s` ď 0 ď sr,
fr, if sr ď 0

(11.8)

with the yet-to-be-determined intermediate output fm. We warn the reader that we will
not set fm :“ fpqmq as one might expect. To derive the actual value, we begin again with
the exact solution q and integrate it over the right half of the rectangle in figure 11.2, i. e.
over r0, xrs ˆ r0, T s. The conservation law there reads

ż xr

0

qpx, T q dx´

ż xr

0

qpx, 0q dx “

ż T

0

f
`

qp0, tq
˘

dt´

ż T

0

f
`

qpxr, tq
˘

dt

which, by splitting up the relevant integral, can be rewritten as

ż T

0

f
`

qp0, tq
˘

dt “

ż Tsr

0

qpx, T q dx`

ż xr

Tsr

qpx, T q dx

´

ż xr

0

qpx, 0q dx`

ż T

0

f
`

qpxr, tq
˘

dt.

If we evaluate these integrals by looking at figure 11.2 and (11.3), we find, after dividing
by T , that

1

T

ż T

0

f
`

qp0, tq
˘

dt “
1

T

ż Tsr

0

qpx, T q dx´ srqr ` fpqrq.

The integral term on the left is precisely what we want to approximate, but this would
rely on the knowledge of x ÞÑ qpx, T q over r0, T srs which we do not have. This is where
the approximation (11.2) comes in. If we replace q with qm in the right integral, we find

1

T

ż T

0

f
`

qp0, tq
˘

dt « srpqm ´ qrq ` fpqrq “: fm. (11.9)

By plugging the definition of qm from (11.2) into (11.9), we see that

fm “
srf` ´ s`fr ` s`srpqr ´ q`q

sr ´ s`
. (11.10)
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Inserting this value into (11.8) gives the HLL numerical flux function.
Thus far, we have not specified how exactly to compute the wave speeds s` and sr.

And different choices will indeed yield different kinds of HLL solvers. Recall that for the
shallow-water equations the speeds can be split up in a form u ˘ c where u is the normal
velocity component and c the speed of the wave. A very simple method is then given by
using the approximation

λmax :“ max
 

|u`| ` c`, |ur| ` cr

(

(11.11)

for the maximum speed and setting sr “ λmax and s` “ ´λmax. If we substitute this into
the HLL numerical flux (11.10), we get what is typically called the Rusanov flux function

Fpq`, qrq :“ F Rus
“ 1

2
pf` ` frq ´

1
2
λmaxpqr ´ q`q. (11.12)

This scheme will be used for the numerical computations in section 13.

12 Splitting Methods

All numerical schemes described up to this point assumed a pure conservation law without
source terms. This section presents a very simple method for the solution of (generally
non-linear) conservation laws with source terms. Its benefit is an easy implementation
because the previously-developed algorithms do not need to be changed; its pitfalls will be
discussed at the end of this section. Our presentation follows [28].

We will once again study a system of m conservation laws in one spatial dimension

qt ` fpqqx “ ψpqq for all px, tq P Rˆ
‰

t,8
“

,

qpx, tq “ q0pxq for all x P R
(12.1)

where q P Rm is the vector of conserved quantities, f : Rm Ñ Rm the flux function,
ψpqq P Rm the source term, t ě 0 some point in time and q0 : R Ñ Rm an initial value.
Everything except q is given. Unlike in the previous sections, ψ will not be set to zero.

The fundamental idea of the to-be-described algorithm is essentially contained in the
following theoretical result.

Theorem 12.1 Consider the scalar initial value problem

qt ` aq “ λq for all px, tq P Rˆ
‰

t,8
“

,

qpx, tq “ q0pxq for all x P R
(12.2)

with two given constants a, λ P R and a given smooth function q0 : RÑ R. Then the exact
solution of (12.2) is also the solution of the ordinary differential equation

st “ λs for all t P
‰

t,8
“

, sptq “ rpx, tq, (12.3)

where r is the solution function of the partial differential equation

rt ` arx “ 0 for all px, tq P Rˆ
‰

t,8
“

,

rpx, tq “ q0pxq for all x P R.
(12.4)
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Proof: We subdivide the proof into three parts.

Step 1: We begin by showing that the unique solution of (12.3) is given by

s̃ptq :“ sptqeλt, t ě t.

To this end, notice that s̃ is certainly a solution of (12.3) because

s̃1ptq “ λsptqeλt “ λs̃ptq (12.5)

by the chain rule.
Now consider an arbitrary solution t ÞÑ sptq of (12.3). Then we find

´s

s̃

¯1

ptq “
s̃ptqs1ptq ´ s̃1ptqsptq

s̃ptq2
(by the quotient rule)

“
s̃ptqλsptq ´ λs̃ptqsptq

s̃ptq2
(by (12.3) and (12.5))

“ 0.

Therefore the function s{s̃ must be constant, i. e. sptq{s̃ptq “ c for all t ě t with some
c P R. Hence, sptq “ cs̃ptq “ csptqeλt and this can only hold at t “ t, if c “ 1.

Step 2: Next, we show that the solution of (12.2) is given by

qpx, tq :“ q0px´ atqe
λt, px, tq P Rˆ

‰

t,8
“

.

To this end, notice that q is certainly a solution of (12.2) because

qxpx, tq “ q10px´ atqe
λt, qtpx, tq “ ´aq

1
0px´ atqe

λt
` λq0px´ atqe

λt

by the chain rule.
Now consider an arbitrary solution px, tq ÞÑ qpx, tq of (12.2). Let us introduce new

variables
τ :“ τpx, tq :“ t and ξ :“ ξpx, tq :“ x´ at

and with them a function

v : Rˆ
‰

t,8
“

Ñ R, vpτ, ξq :“ qpat` ξ, τq
`

“ qpx, tq
˘

.

Applying the chain rule (for functions of two variables) yields

qxpx, tq “ vxpx´ at, tq “ vξpξ, τq ¨ ξxpx, tq ` vτ pξ, τq ¨ τxpx, tq “ vξpξ, τq

and analogously

qtpx, tq “ vtpx´ at, tq “ vξpξ, τq ¨ ξtpx, tq ` vτ pξ, τq ¨ τtpx, tq “ ´avξpξ, τq ` vτ pξ, τq.

This allows us to formulate an ordinary differential equation for v, namely

vτ pξ, τq “ vτ pξ, τq ´ avξpξ, τq ` avξpξ, τq

“ qtpx, tq ` avξpξ, τq ` λqpx, tq ´ λvpξ, τq

(12.2)
“ λvpξ, τq.
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In combination with the initial value vpξ, 0q “ qpx, 0q “ q0pxq this is the same type of
initial value problem as in step 1. Hence, we find that its solution is vpξ, τq “ vpξ, 0qeλt

which is equivalent to

qpx, tq “ qpx´ at, 0qeλt “ q0px´ atqe
λt.

Step 3: We can now combine the results of the previous two steps. Let us collect what
we know: The solution of (12.2) is qpx, tq “ q0px ´ atqeλt. By setting λ “ 0, this also
tells us that the solution of (12.4) is rpx, tq “ q0px´ atq. Finally, the solution of (12.3) is
sptq “ sptqeλt. Since we have sptq “ rpx, tq “ q0px ´ atq this implies sptq “ qpx, tq which
was to prove. �

Notice that (12.4) is just about the simplest conservation law with non-trivial source term
which one can think of. The theorem tells us that it can be solved exactly by a two step
process in which one first solves the homogeneous conservation law followed by an ordinary
differential equation.

So-called splitting methods for the more general system (12.1) now use this result as a
basis and apply the same procedure of splitting the task into the solution of a homogeneous
conservation law and an ordinary differential equation. To formulate this in standard
numerical terms, let us consider problem (12.1) where we are given some time grid tn for
n P N0 of spacing ∆t ą 0 and the initial time is t “ tn while the initial data has some form
Qn and we want to determine the next approximation Qn`1. To this end, we assume that
the spatial domain R has been discretised into points xi for i P Z of equal spacing ∆x ą 0.
Recall that Qn consists of a set of discrete value Qn

i , viewed as the averages over the cell
Ci “ rxi´1{2, xi`1{2s, at any given time (cf. section 9). We can now give a discrete analogue
of theorem 12.1: First, one solves the homogeneous conservation law

pq˚qt ` fpq
˚
qx “ 0 for all px, tq P Rˆ

‰

t,8
“

q˚px, tq “ Qn
pxq for all x P R.

followed by the solution of the ordinary differential equation

d
dt
qn`1

“ ψpqn`1
q for all t P

‰

t`∆t,8
“

, qn`1
ptq “ q˚px, t`∆tq. (12.6)

It might appear as though we have advanced the solution by two time steps 2∆t because
we have taken two steps of length ∆t. Notice, however, that we used only some of the
information of the full partial differential equation in each stage. Only in combination do
both steps yield a consistent approximation to (12.1) over a single step of length ∆t, cf.
[20, chapter 17]. The same reference goes into much more detail considering the theoretical
underpinnings of this approach.

We note that for the implementation of a splitting method one needs to have both a
solver for the homogeneous conservation law (these were discussed in the previous sections)
and a solver for ordinary differential equations (cf., for example, the standard reference
[12]). For our purposes the Euler method will suffice for the solution of the initial value
problem (12.6). The full splitting method then consists of the computations

Q˚i “ Q
n
i ´

∆t

∆x
pF n

i`1{2 ´ F
n
i´1{2q, (12.7)

Qn`1
i “ Q˚i `∆tψpQ˚i q. (12.8)
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We note that, if we were to replace Q˚i in the source term in (12.8) with the starting data
Qn
i , then the resulting scheme could be written in an unsplit form

Qn`1
i “ Qn

i ´
∆t

∆x
pF n

i`1{2 ´ F
n
i´1{2q `∆tψpQn

i q.

Such methods are sometimes preferred by practitioners.
We end this section with a discussion of the problems which are associated with splitting

methods. Experience shows that this kind of approach struggles when the exact solution is
very close to the steady-state solution, i. e. a solution of the conservation law with qtpx, tq “
0 for all t ě t. Notice that these solutions are naturally time-independent. A solution which
is almost a steady-state solution would hence satisfy fpqqx « ψpq, xq. The problem then
is that the steps (12.7) and (12.8) must nearly undo one another and they must do so with
high precision in order to resolve the small deviation which is responsible for the wave.
As an example, consider the case of tsunami modeling where the steady state corresponds
to the ocean at rest. But a tsunami wave is itself almost the ocean at rest, except for a
very small area where there can be deviations with heights of a few meters at most. At
the same time the ocean will be about 4 kilometers deep. Resolving this small difference
accurately is something that our scheme will not do. An alternative to splitting methods
for the solution of the shallow-water equations is discussed in [22].

13 Numerical Experiments

This final section presents some simulations, beginning with the one-dimensional shallow-
water system

ht ` phuqx “ 0,

phuqt ` phu
2
` 1

2
gh2
qx “ ´ghbx.

(13.1)

Once again, px, tq ÞÑ hpx, tq represents the height, px, tq ÞÑ upx, tq the speed and x ÞÑ bpxq
the bathymetry. We will set g :“ 9.81 throughout. For simplicity we will omit the units
in each case. The simulations will be computed on the basis of the algorithms from the
previous sections. The examples that we will look at are dam break and tsunami modeling
from section 4.

General Notes on the Implementation

Before any calculation is made one must first specify a spatial domain. The computations
in this section will be carried out on a domain D, e. g. D :“ r0, 2s. We will discretize this
interval with N points xi for i “ 1, . . . , N . For example, if we choose N :“ 500, then the
mesh size for r0, 2s would then be ∆x “ 2´0

N´1
« 0.004. On this domain we introduce initial

data

hpx, 0q “ h0pxq, phuqpx, 0q “ phuq0pxq for all x P D (13.2)

described in detail for each numerical test below. Recall that we use the conservation law
framework where q :“ pq1, q2q

T “ ph, huqT are the conserved variables. We will also be
given a special bathymetry function x ÞÑ bpxq for x P D in each case. Our numerical
algorithms were derived on the basis of piecewise constant functions. Since working with
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step functions is typically not as straightforward to do in most programming languages, we
will simply assign the value of the step to the cell midpoint xi (i “ 1, . . . , N) in each case.
The function plotter then links these approximations together with linear splines. The
resulting plots are not much different from those which one would obtain with a piecewise
constant function because the step size ∆x is sufficiently small. To obtain initial data, it
is therefore sensible to evaluate the functions from (13.2) at each grid point. The result
is a matrix Qinitial P R2ˆN where the first row corresponds to the initial heights h and
the second row to the initial values of hu at each grid point. These values can be seen as
good approximations to the average values of the initial data over the respective grid cells.
A discrete version of the bathymetry is calculated in the same way, resulting in a vector
bdata P RN .

The approximate solution will be computed by a Godunov-type method (10.1) where
the numerical flux function is obtained through a HLL approximate Riemann solver. Esti-
mates for the maximum and minimum wave speeds will be chosen in accordance with the
Rusanov scheme (11.12). When the bathymetry is not flat, a splitting scheme will be used
to incorporate the source term. The choice of time step ∆t is not free, but rather bounded
by the condition

CCourant “ λmax
∆t

∆x
ď 1

where CCourant is the Courant number (cf. (10.5)) and λmax is the maximum wave speed
encountered in any of the Riemann problems at a boundary. In our calculations we will
choose CCourant “ 0.9 throughout. Our goal will be an approximation of the solution
function after some fixed final time t “ T and to do so, the appropriate time step will be
calculated in each iteration until this time target is met.

Before we can implement the algorithms in the way described above, we must first take
into account a new problem. In contrast to the previous section, the spatial domain here
is finite with boundaries at x “ x1 and x “ xN . This causes problems in the algorithms
because the computation of the numerical flux function relies on information of the sur-
rounding cells. At a boundary point one piece of information is missing: in the case of
x1 that “to the left” of it and in the case of xN that “to the right” of it. The typical
way to handle his issue is by the introduction of so-called ghost cells x0 :“ x1 ´ ∆x and
xN`1 :“ xN ` ∆x which are fed with the values from the neighboring cells. Using out-
flow boundary conditions means to extrapolate the values from the neighboring cells, i. e.
Q0 :“ Q1 and QN`1 :“ QN . At the same time the bathymetry data bdata “ pb1, . . . , bNq

T

is updated accordingly by b0 :“ b1 and bN`1 :“ bN , implying no change at the boundaries.
We explicitly note that the addition of ghost cells changes the involved dimensions. We
now have Qinitial “ pQ0, . . . ,QN`1q P R2ˆpN`2q and bdata P RN`2. After the calculation is
done, the ghost cells can be removed again.

Lastly, we must choose an implementation for the derivative of bathymetry bx in the
momentum equation of (13.1). The obvious choice seems to be to simply differentiate the
bathymetry function x ÞÑ bpxq. However, in real-world applications this function might
not be given in a closed form, but rather by a series of measurements. To account for this
case it is preferable to use a discrete approximation to the derivative, e. g. the centered
difference

bxpxq «
bpx`∆xq ´ bpx´∆xq

2∆x
.

Notice that when x “ xi one has x`∆x “ xi`1 and x´∆x “ xi´1 for all i “ 1, . . . , N .
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The implementation for each of the following examples is more or less the same. One
starts by introducing the ghost cells as described above. Then one calculates the numerical
approximation for as many time steps as needed to reach the final time T . In the end, the
ghost cells can be removed again and the result may be plotted. The calculations at some
fixed point in time t take the following three steps:

(S. 1) Compute the maximum wave speed λmax that is encountered throughout all the
Riemann problems (cf. (11.11)). Calculate the size of the time step

∆t :“ min tT ´ t, CCourant∆x{λmaxu .

(S. 2) For each cell compute a Godunov step (cf. (10.1))

Qn`1
i “ Qn

i ´
∆t

∆x
pF n

i`1{2 ´ F
n
i´1{2q

utilizing the Russanov flux function (cf. (11.12))

Fpq`, qrq “
1
2
pf` ` frq ´

1
2
λmaxpqr ´ q`q.

(S. 3) If the bathymetry is not flat, set Q˚i :“ Qn`1
i in each cell and perform a splitting

step (cf. (12.8))
Qn`1
i “ Q˚i `∆tψpQ˚i q.

At the end of an iteration one updates the time to t`∆t. The iteration ends when t “ T ,
i. e., when the desired time is reached. A commented version of the solver’s source code
may be found in this thesis’ appendix. Let us now turn to concrete examples.

Dam Break

We begin by returning to the dam break problem which is given by combining (13.1) with
piecewise constant initial data. We set N :“ 500 (i. e. ∆x « 0.004) and CCourant :“ 0.9. In
our first example we will use

h0pxq :“

"

2´ bpxq, if x ă 1,
1´ bpxq, if x ě 1

*

, phuq0pxq :“ 0 for all x P r0, 2s

with constant bathymetry bpxq :“ 0.5 for x P r0, 2s. In a second plot we change the initial
data to

h0pxq :“

"

2´ bpxq, if x ă 1,
1.5´ bpxq, if x ě 1

*

, phuq0pxq :“ 0 for all x P r0, 2s

and use variable bathymetry given by the function bpxq :“ 0.2 cosp20xq ´ 0.4x ` 1.5 for
x P r0, 2s. We remind the reader that h refers to the height of the water above the bottom
elevation b such that the plot must contain their sum η “ b` h. The results are shown in
figure 13.1 and 13.2.

We recall that the dam break problem also corresponds to the standard Riemann prob-
lem. This has the added benefit that an exact solution is known. Comparing the numerical
results against the theoretical ones of figure 8.1 yields a suitable way to check that the solver
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is implemented correctly. In fact, this problem is commonly used as a numerical test prob-
lem for exactly this reason. The resulting wave is roughly the same in each case, showing a
left-moving rarefaction and a right-moving shock wave. In the case with bathymetry these
waves start to smear out due to the changing bottom bathymetry. As we have pointed out
before, this is only a model solution. Real-world dam breaks have been observed to have
more or less this shape. One characteristic which is missing, however, is a certain type
of undulation which occurs towards the ends of the middle segment of the solution wave.
These waves can only be explained using a nonhydrostatic theory.

Tsunamis

After we have seen that our solver is configured correctly from the previous examples, we
can now turn to the more complex case of a tsunami wave. Again, we will first test a case
with flat bathymetry bpxq :“ 0.5 for x P r0, 2s. We set N :“ 500 (i. e. ∆x « 0.004) and
CCourant :“ 0.9. A commonly chosen initial height is some form of Gaussian function. In
our case we will use

h0pxq :“ 1.3 exp
`

´ 50px´ 1q2
˘

` 2´ bpxq, phuq0pxq :“ 0 for all x P r0, 2s.

The resulting wave is plotted in figure 13.3. We can see that the initial disturbance breaks
into two pieces of which the first travels off to the left and the second to the right. Just
like the initial condition, the resulting wave remains symmetric to x “ 1. The same can
be said about the speed.

To see how such a wave interacts with a steep shelf (e. g. the continental shelf) we also
provide figure 13.4 where the initial height is a shallower Gaussian

h0pxq :“ 0.3 exp
`

´ 10px´ 0.5q2
˘

` 2´ bpxq, phuq0pxq :“ 0 for all x P r0, 2s

and the shelf is modeled by a sigmoid function around x “ 1, namely

bpxq :“
1.5

1` exp
`

´ 100px´ 1q
˘ ` 0.3 for all x P r0, 2s.

It is worth noting at this point that these simulations are not carried out at realistic scales.
They only serve to demonstrate the rough shape of a solution. In a real-world tsunami
application one would have a wave with an initial height of less than one meter over a basin
of a depth of around four kilometers. This thesis did not focus on a maximally efficient way
to calculate the numerical estimations. For our purposes, these imprecissions can simply be
balanced out by choosing an appropriately large number of cells N . As we have mentioned
before, however, resolving such a small deviation to an otherwise undisturbed steady state
would cause problems with our method of implementation.

Radial Dam Break

Lastly we would like to simulate the solution of a two-dimensional shallow-water problem.
The most popular test problem in this case is the radial dam break problem

ht ` phuqr “ ´
hu
r
,

phuqt ` phu
2
` 1

2
gh2
qr “ ´

hu2

r
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which we will view on the finite domain s0, 2.5s discretized with N :“ 500 (i. e. ∆x « 0.005)
and CCourant :“ 0.9 with initial conditions

h0prq :“

"

2´ bprq, if r ă 0.5,
1´ bprq, if r ě 0.5

*

, phuq0prq :“ 0 for all r P s0, 2.5s

and bprq :“ 0.5 for all r P s0, 2.5s. Here pr, tq ÞÑ hpr, tq represents the height, pr, tq ÞÑ
upr, tq the speed and r ÞÑ bprq the bathymetry. Because of its radial symmetry one can
actually obtain the solution of the radial dam break problem with a one-dimensional model
by rotating the resulting function around the vertical axis (cf. section 8). Figure 13.5
shows both the initial condition as well as two later points in time. Figure 13.6 gives a
more traditional plot of the solution functions of height and velocity, namely their one-
dimensional origins, for different points in time.

It is clearly visible that the resulting wave consists of an outward-propagating circular
shock wave as well as an inward-propagating circular rarefaction. Once this rarefaction
wave meets the center, it gets reflected and causes the height of the center column to
drop with it. This dip in the center is difficult to resolve numerically. As time passes,
the circular shock wave propagates further outward and the inner rarefaction continuously
lowers the center’s height. One observes the creation of one more circular shock wave which
propagates accordingly before the fluid in the center returns to the original elevation of the
water and is no longer affected. A more thorough investigation is given in [28]. The same
reference also includes the discussion of a more realistic numerical example which models
a real-world dam more closely.
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Figure 13.1: Numerical results of the dam break problem with constant
bathymetry.
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Figure 13.2: Numerical results of the dam break problem with varying
bathymetry.
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Figure 13.3: Tsunami wave dispersing on open ocean without bathymetry.
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Figure 13.4: Tsunami wave interacting with a steep shelf.
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Figure 13.5: Solution of the radial dam break problem after t “ 0, t “ 0.05
and t “ 0.15. The radial solution which is being rotated around the horizontal
axis is shown in red.
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Figure 13.6: Solution of the radial dam break problem after t “ 0.05, t “ 0.2
and t “ 0.7.



Conclusion and Outlook

The goal of this thesis was to give an accessible introduction to the shallow-water model and
its numerical solution with finite-volume methods. After collecting some fundamental facts
on differential equations, vector analysis and conservation laws in chapter I, chapter II was
dedicated to mathematical modeling. It presented a full derivation of the two-dimensional
shallow-water system with bathymetry. To this end, the Euler equations were needed
and derived from their fluid-dynamical origin. We also discussed several extensions of the
shallow-water framework and its theoretical properties. Chapter III gave an introduction to
the finite-volume method. It presented Godunov-type schemes and approximate Riemann
solvers for the Riemann problems which arise during their solution. We also discussed the
treatment of source terms via a splitting approach. Lastly, we computed several solutions
of the models from chapter II and studied their behavior.

There are many possible extensions to what this thesis has presented. Although most of
these were already mentioned throughout the text, we will collect them here once more to
give the reader a better overview. Details can be found in the respective sections.

In chapter I the framework of hyperbolic conservation laws was only formally introduced
for the one-dimensional case. Although the shallow-water model was derived in its general
two-dimensional form, this was not used for the numerical studies later on. The multi-
dimensional case is far more important in real-world applications (e. g. [22]). After all,
the “volumes” in our presentation were merely intervals. As it turns out, most of the
fundamental ideas behind the algorithms and the theoretical considerations carry over to
several dimensions. An extensive general treatment is given in part III of the book [20] by
LeVeque. Toro’s book [28] treats the two-dimensional shallow-water equations in detail
(this includes the solution of the corresponding Riemann problem).

Chapter II dealt with the derivation of the shallow-water equations. In section 8 we
hinted at how this model could be extended to fit different types of tsunamis (e. g. those
generated by asteroids or by underwater landslides). Of course, one can study fluid dynam-
ics more generally and derive different models which govern not just the flow of water, but
also that of gases and ice, to name just two examples. The Navier-Stokes system (see also
remark 5.1) comes to mind. It is the most general model that actually describes all of these
phenomena. The texts by Vallis [30] and Klinger, Haine [19] use a geophysical ap-
proach and derive many different partial differential equations for oceanic and atmospheric
flows. The texts [17] and [26] by Johnson and Stoker focus exclusively on water. In
[13] one finds more extensions to the shallow-water equations and [15] deals with tsunami
modeling more generally.

The last chapter dealt with the numerical solution of the shallow-water equations. We
could only give a very sparse introduction here. In particular, the algorithms were not
analyzed theoretically and they were not optimized for speed. The text [20] by LeVeque
treats all of these issues. The book [27] by Toro develops our algorithms much further.
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It also includes an extensive treatment of approximate Riemann solvers. The paper [22]
by LeVeque, George and Berger includes a discussion of adaptive mesh refinement
for the shallow-water equations which is essential for fast tsunami predictions.

Besides improving the finite-volume method, one could also go down a different route
and consider other algorithms for the solution of partial differential equations. The book
[15] by Horrillo, Knight and Kowalik focuses on a finite-difference approach for
tsunamis. Vreghdenhill’s book [31] presents a finite-element ansatz for the shallow-
water equations. A question that is of particular interest is, of course, which type of
algorithm is best suited for the solution of the shallow-water system.



Appendix: Source Code

In this appendix we list the Octave/MATLAB source code that was used in section 13 to
produce the numerical simulations there. We note again that the Godunov method that is
implemented below is only of first order. This will not be sufficiently fast for most practical
applications for which higher-order methods should be employed.

Code for the Flux Function

1 function fluxQ = numericalFlux(Q_L , Q_R)

2 %The numericalFlux function computes the numerical flux between

3 %the two states Q_L and Q_R by approximately solving a Riemann

4 %problem for the one -dimensional shallow -water equations via the

5 %HLL solver. The utilized speed estimates result in the Rusanov

6 %flux function.

7 %

8 %Inputs: Q_L 2x1 vector , initial condition on LEFT boundary ,

9 % first component is height=h, second component is

10 % height*speed=h*u

11 % Q_R 2x1 vector , initial condition on RIGHT boundary ,

12 % first component is height=h, second component is

13 % height*speed=h*u

14 %

15 %Output: fluxQ 2x1 vector , \mathcal{F}(Q_L , Q_R)

16

17 %Translating conserved quantities into original values

18 h_L = Q_L(1); u_L = Q_L(2)/Q_L(1);

19 h_R = Q_R(1); u_R = Q_R(2)/Q_R(1);

20

21 %Flux at the boundaries

22 F_L = [Q_L(2); Q_L(2)^2/Q_L(1) + 0.5*9.81* Q_L(1) ^2];

23 F_R = [Q_R(2); Q_R(2)^2/Q_R(1) + 0.5*9.81* Q_R(1) ^2];

24

25 %Maximum wave speed

26 lambda_Max = max( abs(u_L) + sqrt (9.81* h_L), ...

27 abs(u_R) + sqrt (9.81* h_R) );

28

29 %Rusanov flux

30 fluxQ = 0.5*( F_R+F_L) - 0.5* lambda_Max *(Q_R -Q_L);

31 end
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Code for the Godunov Method

1 function Q = sweSolver(A, B, Q_initial , T, C_courant , b_data)

2 %The sweSolver function computes an approximate solution to the

3 %one -dimensional shallow -water equations on the intervall [A,B]

4 %with initial data Q_initial after time T with bathymatry b_data.

5 %The solver utilizes outflow boundary conditions and a time step

6 %chosen in accordance with the Courant number C_courant.

7 %

8 %Inputs: A scalar , left boundary of spacial domain

9 % B scalar , right boundary of spacial domain

10 % Q_initial 2xN matrix , where N is the choosen number of

11 % discretization points (see main.m); first row

12 % corresponds to heights=h, second row cor -

13 % responds to height*speed=h*u

14 % T scalar , time after which solution is computed

15 % C_courant scalar <= 1, needed to choose the size of the

16 % time step dt=\Delta t.

17 % b_data 1xN vector

18 %

19 %Output: Q 2xN matrix , approximate solution to the cons -

20 % ervation law after time T

21

22 %Computing spacial step size dx=\Delta x

23 N = size(Q_initial)(2);

24 dx = (B-A)/(N-1);

25

26 %Adding ghost cells in spacial domain and initial data

27 x = linspace(A,B,N);

28 x = [ A-dx , x, B+dx];

29 Q = [ Q_initial (:,1), Q_initial , Q_initial (:,N) ];

30 b_data = [b_data (1), b_data , b_data(N)];

31

32 %Euler method

33 t = 0

34 while t < T

35 %Computing maximal wave speed over all cells

36 lambda_Max = 0;

37 for i=2:N+1

38 %Choosing indices

39 L = i-1;

40 R = i;

41 %Converting from conserved variables to original variables

42 h_L = Q(1,L);

43 h_R = Q(1,R);

44 u_L = Q(2,L)/Q(1,L);

45 u_R = Q(2,R)/Q(1,R);

46

47 lambda_Max = max( lambda_Max , max(abs(u_L)+sqrt (9.81* h_L), ...

48 abs(u_R) + sqrt (9.81* h_R)) );

49 end

50

51 %Compute time step dt=\ Delta t. In case t+dt>T, we choose the step

52 %such that the iteration terminates at the final time T

53 dt = min(T-t, C_courant*dx/lambda_Max);

54

55 %One time iteration. Q_new is introduced to prevent overwriting Q
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56 Q_new = Q;

57 for i=2:N+1

58 %Solving the homogenous conservation law

59 Q_new(:,i) = Q(:,i) - dt/dx*( numericalFlux(Q(:,i), Q(:,i+1)) ...

60 - numericalFlux( Q(:,i-1), Q(:,i) ));

61 %Splitting step

62 Q_new(2,i) = Q_new(2,i)+dt*( -9.81* Q_new(1,i)*...

63 ( b_data(i+1)-b_data(i-1) )/(2*dx) );

64 end

65 Q = Q_new;

66

67 t = t + dt

68 end

69

70 %Removes the Ghost cells from the computed solution

71 Q = Q(:,2:N+1);

72

73 end
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